A COMPUTATIONAL WORKFLOW FOR THE
ESTIMATION OF ENVIRONMENTAL VIRAL

DIVERSITY IN METAGENOMES

by

FLORENT E ANGLY

A Dissertation submitted to the Faculty of Claremont
Graduate University and San Diego State University in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy in the Graduate Faculty of
Computational Science

Claremont and San Diego, California
2009

Approved by:

Forest Rohwer, Chair

Copyright by Florent E Angly 2009
All rights reserved



We, the undersigned, certify that we have read this dissertation of

Florent E Angly and approve it as adequate in scope and quality for

the degree of Doctor of Philosophy.

Dissertation Committee:

Forest Rohwer, Chair

John Angus, Member

Rob Edwards, Member

Alpan Raval, Member

Peter Salamon, Member



ABSTRACT

A computational workflow for the estimation of environmental viral

diversity in metagenomes

by
Florent E Angly

Claremont Graduate University and San Diego State University: 2009

Viruses and in particular phages, predators of Bacteria and Archaea, are
numerically abundant in the environment and play important ecological roles. Yet,
little is known about their diversity and distribution. The introduction of
metagenomics has revolutionized the study of viral and microbial communities by
bypassing the need to culture individual species, thus allowing access to their
complete diversity. However, unlike for microorganisms, no standard technique
exists to measure viral diversity from sequence data, and lab techniques are
limiting.

In this thesis, computational methods were developed to quantify the
diversity of viruses from metagenomic data. These methods use overlapping
sequences (contigs) assumed to come from the same species. The modeling of
the contigs characterizes viral community structure and a-diversity, or sample

diversity. Assembling metagenomes pooled together produces contigs between



sequences from multiple samples (cross-contigs). Such contigs are indicative of
common viruses and are the basis to estimate [-diversity (change in diversity
between samples). Modeling the a-diversity and [-diversity of uncultured viral
communities relies on knowing the average length of their genomes, which was
calculated here from similarities of metagenomic reads to genomes of known
length. The different programs necessary to the estimation of viral diversity were
assembled into a workflow available online in order to offer the metagenomic

community an easy way to assess metagenomic diversity.

The application of the viral diversity workflow suggests that there may be as
many as 108 viral species on Earth, and that their distribution (e.g. diversity
patterns) may be similar to that of microorganisms and macroorganisms.
However, some biomes such as the air and deep subsurface remain unexplored.
As additional metagenomes are produced and sampling resolution increases,
this workflow for estimating diversity will prove invaluable to gain further insights

into viral biogeography.



DEDICATION

To my family, friends and people that help giants becoming bigger.



ACKNOWLEDGMENTS

I want to thank the Gordon and Betty Moore Foundation and the National
Science Foundation Biocomplexity Initiative for providing funding to

support this research.

Gordon and Betty

—
..

OUNDATION

Vi



TABLE OF CONTENTS

ADSTIACT. ...eeiieiiieeeeeee ettt iii
(D70 [ [oF=Ui[o] o RO UUUPPPPPPPPRPPPRRN %
ACKNOWIEAGMENTS. ... e e e e e e e e e e e e aaa s Vi
Chapter 1:  INtrOUCTION........cooi i 1
The ecological IMPOrtance Of VIFUSES. ..........euiiiieiiiiiiiiiiieee e 1
Viral METAGENOIMICS. ... ..t e e e e e e e e eeesrennnaaeas 4
QUANLITYING DIOAIVEISILY.......uueiiiiiiiiii e e e e e e enaaas 6
Patterns Of AIVEISItY.........cvviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee et a e 12
Characterizing viral DIOIVEISILY............ouiiiiiiiiiiiiiee e 14
Chapter 2:  O-AIVEISITY.....ueiiiiiieee e 16
Hurdles to the estimation of viral 0-AIVEISItY.........ccccoviiiiiiiiiiiiiiiee e 16
Defining viral species from sequence assembly............cccccoeiiiii i, 17
The Community Lander-Waterman equations..............ccceeeeeeevvvviiie e e 18
Modeling viral community structure and o-diVersity..........ccccceeeeeininiineeeeeeeeen. 20
Chapter 3:  B-AIVEISITY.....ueiiiiiiieiiie e 23
MEASUIES Of B-OIVEISITY....cciiiiiiiiiiiiiiii et a e 23
Distribution of Marine VIFUSES...........couiviiiiiiiiii e 25
Assembly of contigs and CroSS-CONtIGS........cieiieiiiiiiiiiiie e 27
Modeling the B-diversity of viral COMMUNITIES...........cooviiiiiiiiiiiiii e 31
Chapter 4:  Average genome length...........cccooooiiiiiiii e 35

vii



Influence of the average genome length on diversity estimates..................... 35

Methods for estimating average genome length..........cccoooiiiiie, 36
Biological implications of average genome length ..................ccciiii e 38
Average genome length from sequence similarities.............ccccccceev v, 39
Method validation with simulated metagenomes............ccccevveviiiiieiiiiieeciineenns 42
Average genome length in four bIOMes..........ccoooviiiiiiiiiiiiii e, 43
Chapter 5: A computational workflow for estimating viral diversity.................... 45
Biology and WOIKFIOWS...........uuuuiiiiiiiiiiiiiiiiiiiiiseiseeieeseee e aeen e eeeeenes 45
Diversity WOrkflow OVEIVIEW..........ccooiiieei e 46
Implementation of the a-diversity Workflow.............ccooooiiiiiii e 47
Revisiting previous diversity @StMates........coooiiiiiiiiiiieie e 50
Improving the a-diversity Workflow acCcuracy............ccccooeveeiiiiiiiiiiiiiiii, 55
Chapter 6:  CONCIUSIONS..........uuiiiiiiiii e 59
Innovative methods for characterizing viral diversity..........cccccoooveeiviiiiieeeennns 59
Insights into the ecology Of VIFUSES............uiiiiiiiiiiiiiieee e 60
Future computational and biological ProSPects............c.ueeeviieeiiiiiiiiiiiieeeeeeeee 61
RETEIEINCES. ... e e e 65
APPENAICES. ..o 85
APPENdIX 11 PHACCS. ... ittt e e e e e e e e 86
Appendix 2: MAXIPHI ... 95
APPENAIX 3: GAAS . s 120

viii



CHAPTER 1: INTRODUCTION

Viruses, biological entities incapable of reproducing without a host cell, are
the most numerous biological entities on Earth, but their diversity is largely
uncharacterized. Phages, viruses which infect Bacteria and Archaea, are
especially diverse, with a number of extant phage species higher than that of
other organisms. This thesis presents novel methods to characterize the diversity
and distribution of viruses using metagenomic sequence data, a computational
workflow incorporating these methods, and a case study of viral diversity in the
world's oceans. The following is an introduction to the thesis and a review of the

literature on viral metagenomics and diversity estimation.

The ecological importance of viruses

Viruses are ubiquitous and numerous in the environment, and are present in
high abundances in terrestrial, aquatic and host-associated biomes [1-9], where
their hosts are numerous. Many viruses also survive in extreme conditions such
as high or low temperature, high pressure and salinity [10-17], and there is
evidence that suggest their existence in the air column [18,19]. Observation of
Virus-Like Particles (VLPs) with electronic and epifluorescence microscopy has
revealed the presence of ~10 million VLPs per milliliter of seawater [20-23]. In the
oceans, there are typically ~10 viral particles for each microbial cell [24]. The
global number of viral particles was estimated to be ~103* VLPs, based on the

number of Bacteria and Archaea on Earth [25].
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Not only are viruses abundant and ubiquitous, but they are also highly
morphologically and genetically diverse. Circoviruses are the smallest known
viruses, with an icosahedral capsid approximately 17 nm in diameter containing

two genes on a circular single-stranded DNA molecule [26]. In contrast, the

Sunlight

Autotrophs : Heterotrophs

\_/'W

Seaweed

Figure 1.1: Role of phages in the marine food web.
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Mamavirus has a 1.7 Mb double-stranded DNA genome, and its 750 nm large

capsid is larger than some Bacteria [27].

Viruses, and in particular phages, play an important role in the marine food
web. Bacteria incorporate Dissolved Organic Carbon (DOC) present in the water
column for their growth [28,29]. The grazing of protists on Bacteria and of larger
organisms on protists in turn, drives this carbon to higher levels of the food chain
[28,29]. Instead of being sequestered in organisms of increasing size, the carbon
contained in Bacteria can return to the DOC pool in the water column by the lytic
action of phages [30,31] (Figure 1.1). This viral shunt directly affects important
global biogeochemical processes such as the carbon cycle [32,33] and may have

consequences that have to be integrated in global warming models [34].

Phages also impact microbial population dynamics, and their impact is as
great as that of other predators of Bacteria, such as protists [35]. Predator-prey
models such as “Kill the Winner” [36,37] have been advanced to explain the
complex dynamics between phages and their hosts. Communities that follow Kill
the Winner dynamics consist of a few highly abundant species and a large
number of rare species. In Kill the Winner models, the most abundant bacterial
hosts are more likely to be lysed due to increased contact with phage predators,
and as the population size of these dominant bacteria is reduced, different
bacterial species then become dominant [36,37]. The constant reciprocal
pressure of phages on their hosts and of hosts on their phages [38] leads to co-

evolutionary arms race called “Red Queen Effect” [39-41]. Only the species that



continually evolve to escape predation and outcompete other species maintain

their fitness relative to the system and survive.

Viral metagenomics

Shotgun metagenomics was first developed to allow for the study of viral
diversity without the limitations of culture-based and marker gene-directed
approaches [42]. Metagenomics [43] combines genomics with ecology, and
involves isolation of nucleic acids directly from environmental samples to obtain
genomic sequences from the full cohort of organisms in an environment, as
opposed to the genome of a single species [44,45]. Metagenomic approaches
are ideal for studying viruses, since only a small fraction of the microorganisms

are culturable [46] and phage species generally only have a very narrow number
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Figure 1.2: The evolution of the size of Genbank



of possible microbial hosts [47]. Metagenomics has been applied to viral
communities in a variety of environments [1,48-61] and also to microbial
communities [19,49,62-79]. In recent years, metagenomic methods combined
with high-throughput sequencing [80-82] has generated unprecedented amounts
of sequence data that are responsible for the exponential growth of public

sequence databases such as GenBank [83] (Figure 1.2).

Metagenomic sequence data is used to find new enzymes [84-87], study
evolutionary history [88], sequence novel organisms [50,62,63,89,90], and
characterize the ecology of natural communities, groups of organisms living in
the sample place at a given time [91]. In ecological studies, metagenomics is
used to describe the structure and function of naturally-occurring communities by

answering three central questions:
* Who is there? What species are present? (taxonomy)
* What are they doing? What genes do their genomes encode? (function)
* How many are there? How many different species/genes are present?
(diversity)

To begin answering these questions, metagenomic sequences are usually
compared to databases of annotated sequences (known species and known
function) using local similarity search tools such as BLAST [92]. Public platforms
for metagenome analysis such as MG-RAST [93], CAMERA [94] and IMG/M [95],

or specialized software like MEGAN [96] and KARMA [97] extensively employ



similarity searches. Most of them annotate sequences using only the best
similarity. However, the best similarity may not extend to the entirety of the query
sequence, may not be from the most closely related organism, and metagenomic
sequences may be highly similar to more than one sequence in the database
[98]. Cutoff values for significant similarities are often determined arbitrarily and
are based on BLAST expect values (E-values), which change depending on the
size of the database used [99]. Additionally, in practice, many metagenomic
sequences are be from novel organisms and thus have no similarities to
sequences in existing databases. These sequences are categorized as unknown,

and are often discarded in subsequent bioinformatic analyses [100].

Few methods can make use of all reads in a metagenomic dataset. The
frequency of the oligomers in metagenomic sequences has been characterized
previously. This similarity-independent method has shown that metagenomes
from different biomes have distinct oligonucleotide signatures [101]. Assembly of
metagenomic sequences, which plays an important role in this thesis to estimate
diversity [48,50-53,57,102], also does not rely on the existence of similarities to
sequences in databases. Sequence assembly is further an efficient method to

reconstruct the genome sequence of unknown viruses [50,60,61,63].

Quantifying biodiversity

The estimation of diversity is more than an exercise in species enumeration.

The loss of biodiversity has important socio-economical impacts [103,104].



Quantification of biodiversity is thus an important aspect of conservation efforts.
Biodiversity in space is characterized in three ways [105,106]. a-diversity defines
the diversity of a given location (or sample, or ecosystem), for example the
number of bird species in a given wood. On a larger scale, y-diversity captures
the cumulative diversity of several locations, for example, the number of bird
species in all the woods of a country. Finally, B-diversity measures the difference
in diversity between several locations, for example how many species of bird are

unique to each wood.

There are three components which comprise a-diversity: i) richness, or how
many species there are (the more species, the more diverse the community), ii)
evenness, or how evenly species are distributed in the community (if some
species are numerically dominant, the community is considered less diverse),
and iii) phylogenetic relatedness, or how closely related the species are (more
phylogenetically distant species reflects a higher diversity) [107,108]. Many
metrics capture one or several of these aspects of a-diversity into a single
number. Let M be the number of species (richness) in a sample, R the total
number of individuals in this sample, and f; the relative abundance of the j ¥

species, then the following are defined:

* Margalef's richness [109]: A measure of richness normalized by sample

M-1
In R

size. G =

* Shannon-Wiener index [110]: Adapted from information theory, it takes into



account species richness and relative abundance (on which evenness

M
depends). H'=-Y f,Inf,
i=1

H _ H
H' In M

max

Pielou's evenness [111]: P =

Simpson's index [112]: Measured as the probability that two individuals

drawn at random from a community belong to different species.

Berger-Parker index [113]: This index is the abundance of the most

abundant species. B = max ( f,)

1<isM

The notion of species is difficult to define [114,115]. Taxons, Operational
Taxonomic Units (OTUs), genotypes, or other taxonomy-related definitions are
often used but biodiversity can also refer to more than the diversity of species.
Species perform functions that are essential for the functioning of the ecosystem
they live in. For example, corals on a reef provide shelter and breeding ground
for a multitude of fish. In addition, corals are calcifying organisms that alter how
much carbon dioxide is in the ocean. Functional diversity focuses on what the
species do, not what they are. In fact, the diversity of functions performed in an
ecosystem may be more important than the diversity of the species themselves
for the proper functioning of this ecosystem [116]. The functional diversity of

viruses and microorganisms can be accessed through their metabolism, i.e. their
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gene content [64,117,118].

The species diversity of a community is reflected by its community structure,
a representation of the arrangement of species inside their community (e.g., their
relative abundance). Determining community structure may provide clues into the
functioning and dynamics of its individuals. For example, the power law
community structure often observed in viral communities [51,102,119] could be
the result of a particular phage-host “Kill the Winner” dynamics [120]. Rank-
abundance curves, or Whittaker plots [121], provide a visual representation of
community structure. On these plots, the Y-axis represents the relative
abundance of species, while on the X-axis, anonymous species are ranked by

decreasing relative abundance, the species with rank 1 being the most abundant

(Figure 1.3).
o Most abundant species
) Shape of the curve reflects
g the rank-abundance model
o (power law, lognormal, ...)
©
c
S Steepness of the curve
o] reflects evenness
©
) Richness
=
-
L,
O]
o
>
123.. ..M

Species rank

Figure 1.3: A rank-abundance curve depicts community structure as a list of

anonymous species ranked by abundance.
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Various rank-abundance models have been proposed to model community
structure. Popular models have the common characteristic of exhibiting a large
drop-off in the relative abundance of the first few species. In the following model
equations, M represents the sample richness, fi is the relative abundance of the
i " most abundant species, and a and b are parameters of the rank-abundance

model to be determined:

Power law: An empirical model that describes many natural phenomenons
[122,123]. f,=ai” for 1<i<M

 Logarithmic: Another empirical model [123]. f,= a(log(i+1))_b for
1<isM
—ib

+ Exponential: Empirical model [123]. f,=ae =~ for 1<is M

* Broken-stick: An ecological model based on a partitioning of resources

M

between species [124]. f,= % Z

% for 1<i< M ,whereRisthe
h=i

total number of individuals sampled.
* Niche preemption: Also based on resource partitioning [125].
f,=Ra(l—a)™" and f,,=R(1-a)""" for 1<i<M-1 .

* Lognormal: Acommonly used model with theoretical justifications [126].

10



L, = V2erf™! and [,,,, =+ for 1<i< M where erf

2 l,
M—i—erf(ﬁ)

is the error function and erf” its inverse.

* Unified neutral theory: Unlike other ecological models, the unified neutral
theory assumes that the fitness of different species is the same [127,128].
The abundance of species in this model is caused by an equilibrium

between speciation and extinction and can be solved numerically.

R!6M

Pr(ryry..,ryl0,R) = R
122 R* ¢ I, !..p! [ (0+k—1)
k=1

where

0 =2Rv .The symbol v designates the speciation rate, ¢, the
number of species with k individuals, and r; the number of individuals
belonging to species i.

Determining the rank-abundance model that best fits empirical species
abundance observations is a non-trivial task that was originally done visually
[129]. Visual fitting is inappropriate to distinguish between similar models and it is
complicated by sampling biases that cause rare species to be undersampled,
resulting in a lack of the tail of rank-abundance curves [130]. Tools were created

recently to address these limitations [131,132]. Once the community structure is
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known, it is straightforward to calculate a variety of diversity measures.

Patterns of diversity

Diversity in the environment has been reported to vary according to specific
patterns potentially caused by global but poorly understood forces [133]. The
latitudinal gradient of diversity has a long history and was first reported by von
Humboldt [134]. He noted that as latitude increased, the variety of plants species
decreased, i.e. their richness was higher at the equator than at the poles.
Nowadays, it is recognized that species richness reaches a maximum at low
latitude, not exactly 0° (Figure 1.4A). A similar pattern exists for elevation, the
elevational gradient of diversity, in which richness is negatively correlated with
altitude [135]. Modern impacts of humans on the environment [136] provide a
good ground to study another gradient, the intermediate disturbance gradient, in
which a disturbance that gradually increases in frequency or intensity causes
diversity to progressively increase until it dramatically collapses [137-139]. A last
pattern is the species-area relationship [140,141]; the number of species found in

an area was found to correlate with the size of this area according to a power

function: M =dA° where M is the species richness, A is the area and d and e

are constants (Figure 1.4B).
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A) Latitudinal gradient of richness B) Species-Area relationship

Latitude Richness (log)
+90°

-90°
0 Richness 0 Area (log)

Figure 1.4: Theoretical data demonstrating different diversity patterns. A) The
richness as a function of latitude follows a latitudinal gradient. B) The species-

area relationship appears as a straight line on a log-log plot.

The latitudinal gradient of richness is the most well-known of the diversity
patterns [142]. It is also very general and has been shown to range from aquatic
to terrestrial biomes, for various organisms with a mass spanning over height
orders of magnitude [143]. Despite this, it is unclear what causes it. Explanations
for its existence have been advanced and are arranged in three categories.
Historical reasons argue that the low species richness of the poles is due to the
lack of time available for species to migrate and colonize these areas after
historical events such as glaciations [144]. On the other hand, ecological factors
have supporters that claim that increased richness in the tropics is reached

because of larger speciation rates caused by stronger biotic interactions such as

13



predation, competition, and mutualism [145]. Finally, evolutionary hypotheses
stipulate that a higher evolutionary rate in the tropics is responsible for higher

speciation rates, and hence increased richness [146)].

The diversity of microbial communities has been estimated using molecular
methods such as the Polymerase Chain Reaction (PCR), Automated method of
Ribosomal Intergenic Spacer Analysis (ARISA) [147], Terminal Restriction
Fragment Polymorphism (TRFLP) [148], Pulse Field Gel Electrophoresis (PFGE)
[149], and Denaturing or Temperature Gradient Gel Electrophoresis (DGGE and
TGGE) [150,151]. Evidence from surveys using these techniques indicate that
microorganisms may follow the same patterns of diversity as macroorganisms.
For example, two studies suggest that marine Bacteria are subject to the

latitudinal gradient of diversity [152,153].

Many of the tools used to investigate microbial diversity are not applicable to
viruses because they lack common marker genes [154,155]. PFGE and other lab
techniques that are used on viruses are often expensive, time-consuming and
impractical for large scale studies. Therefore, it remains to be seen if viral
communities follow the same patterns of diversity as microorganisms and

macroorganisms, i.e. if they respond in the same way to the same global forces.

Characterizing viral biodiversity

Viruses have been referred to as the dark matter of the biosphere [156]

because only a small fraction of their diverse species has been inventoried. In
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this thesis, | show how to take advantage of the power of metagenomics by using
all metagenomic sequences (including the unknowns) to investigate the diversity
of uncultured viral communities. First, | detail a novel computational method to
quantify the a-diversity of viral metagenomes in Chapter 2. Building on this
method, Chapter 3 presents the first approach to evaluate metagenomic viral 3-
diversity. Then, Chapter 4 introduces an original program to estimate average
genome length in microbial and viral metagenomes, which improves a and 3-
diversity estimations. Finally, | show in Chapter 5 how combining these various
tools forms a comprehensive workflow for the characterization of viral diversity

from natural communities.
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CHAPTER 2: a-DIVERSITY

This chapter introduces PHAge Communities from Contig Spectrum
(PHACCS), the first publicly available software designed to estimate viral o-
diversity (diversity of a single sample). PHACCS uses contigs as the input to
mathematical models of diversity, circumventing the limitations of similarity-based
approaches. | developed this research tool and published it in BMC

Bioinformatics [102]. The text of this article is attached in Appendix 1.

Hurdles to the estimation of viral a-diversity

o-diversity characterizes the diversity of a single community. Studies on
microorganisms typically use the sequence of the 16S rDNA gene, which is a
genetic marker shared by all Bacteria and Archaea, to estimate microbial

phylogeny and a-diversity without cultivation [157-162].

There is no such common genetic marker for viruses that could be used to
assess viral phylogeny and a-diversity [154,155]. Specific proteins of the phage
capsid, tail or polymerase have been used to phylogenetically classify phages
from specific taxa [163-167]. However, even though particular genes are
conserved across one or several viral families, none is universal. Therefore,

marker-based approaches are not appropriate to survey the viral communities.

Lab methods such as Denaturing Gradient Gel Electrophoresis (DGGE)

[150], Temperature Gradient Gel Electrophoresis (TGGE) [151], and Pulsed-Field
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Gel Electrophoresis (PFGE) [149], provide genetic fingerprints used to compare
viral community diversity [168]. The number of bands obtained after running viral
DNA on an electrophoretic gel is a proxy for species richness [169-173]. Though
they may be useful to characterize and compare natural viral communities, these

methods are limited in accuracy, reproducibility, and can have biases.

Defining viral species from sequence assembly

A computational method for the estimation of viral diversity from
metagenomes (shotgun libraries) was originally developed in [51]. In this study,
the investigators considered metagenomic reads which assembled with each
other as belonging to the same species. Sequence assembly is typically used in
a genomic context to join overlapping sequences into contigs for the
establishment of the consensus sequence of a genome [174,175]. In the
metagenomic context, by assuming that only sequences from the same species
assemble together, the more contigs there are from a given species, the larger
the relative abundance of that species in the community. This method is marker-
independent and uses all metagenomic sequences for the estimation of diversity.
Using mathematical modeling, it allows for a quantitative assessment of
biodiversity, that is based not only on how many species are present, but also on

how abundant they are.

No assembly software is specific for metagenomes, and chimeric contigs

containing sequences from multiple species can be formed. The assembly-based

17



definition of a viral species is thus dependent on the stringency of the assembly
parameters used. In [51], the best assembly parameters were determined by
assembling 500 bp DNA fragments originating from 11 phage genomes using
Sequencher [176]. The best parameter values determined heuristically were a
minimum of 98% identity and 20 bp overlap between two reads. These
parameters assembled only sequences from the same phage or very closely
related phage species. Since there is a discrepancy between the assembly-
based definition of a viral species and the actual viral taxonomy, the term

genotype was introduced as a substitute for species.

The Community Lander-Waterman equations

The mathematical models used to estimate diversity from contigs were
derived from the original Lander-Waterman equation [177] which expresses the
expected number of sequences cq that are part of a contig of size g as:

¢, = Nw, where N is the total number of sequences and wg the probability that
a seqguence goes in a g-contig. The Community Lander-Waterman equations are
generalized for a community of different species [51]. For a community with a
given structure (rank-abundance equation) and richness M, the Community

Lander-Waterman equation models the expected occurrence of contigs of

M
different sizes (contig spectrum) (Figure 2.1) as: Cq=zniwqi where n;
i=1

indicates the number of reads of the i " species.
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Modeling viral community
structure and diversity is an
inverse problem; many community
structures are empirically tested
until the best-fitting one is found. In
[51], the fit of different rank-
abundance forms to a contig
spectrum obtained from a marine
viral community was quantified as
the negative log-likelihood, i.e. the
sum of the variance-weighted,
squared deviations from the
observed contig spectrum. Thus,
the smaller the negative log-
likelihood, the better the fit. Power
law and exponential community

structures were tested on two

Metagenome
—.,
1-contig{ e
2-cont|g{ T —
3-contig{
Conti Y
ontig 144 41 00..]
spectrum v

Diversity modeling

Figure 2.1: Metagenomic sequences are
assembled into contigs. The number of
contigs of each size is counted to
determine the contig spectrum. Taken from
Angly et al. (2006) PLoS Biol 4(11):e368
under the terms of the Creative Commons

Attribution License.

marine viral communities, resulting in a better fit of the power law model. The

same diversity modeling technique was applied to uncultured viruses issued from

human feces a year later [52], and the power law described the community the

best.

Later [53], the diversity model was improved by representing the abundance

19



of phage species as a frequency (or relative abundance). Also, an alternative
model appropriate for very even communities and a Monte-Carlo simulation were
designed to compare to the original model. The application of the two new
methods to newly generated near-shore and sediment viral metagenomes

revealed no significant advantage over the original technique.

Modeling viral community structure and a-diversity

| developed PHACCS [102] to improve and extend the contig spectrum
modeling approach and provide an easy-to-use web interface. In PHACCS, the
Community Lander-Waterman equation was used and the error (opposite of the
goodness of fit) between predicted and observed contig spectra was calculated
as in the original model. In addition to the power law and exponential rank-
abundance forms, PHACCS models communities using the logarithmic, broken
stick, niche preemption and lognormal rank-abundance forms (see Chapter 1). To
automatically determine the best-fitting model, | implemented an optimization
algorithm that iteratively minimizes the error in PHACCS (Figure 2.2). PHACCS
results present the community structure in both graphical and mathematical form,
and the a-diversity estimates, including the richness, evenness, the Shannon-
Wiener index and the Berger-Parker index (abundance of the most abundant
genotype). Scientists can execute the PHACCS program online at

http://biome.sdsu.edu/phaccs, or at http://portal.camera.calit2.net/ as part of the

a-diversity workflow on CAMERA (see Chapter 5).
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Input:
Contig spectrum and
various parameters
Community Lander-

Assume a rank- Assume a total number Assume a model Waterman equation

abundance function * i of genotypes * parameter value ** |
A A ok

Predict the contig
spectrum

v

Compute error between
actual and predicted
contig spectrum

Change the model parameter val

Minimum error for this
number of genotypes?

Change the total number of genotypes

Minimum error for this
rank-abundance function?

Change the rank-abundance function

Output for each function:
- Rank-abundance model
- Diversity estimators

Figure 2.2: The PHACCS algorithm iteratively minimizes the error in fit of the
rank-abundance model to the contig spectrum. Taken from Angly et al. (2005)
BMC Bioinformatics 6:41 under the terms of the Creative Commons Attribution

License.

The four viral metagenomes previously sequenced in [51-53] were analyzed
with  PHACCS [102] and compared. The power law was the best-fitting
community structure in all cases. The viral communities were rich (between
2,390 and 7,340 genotypes), and exhibited different community structures

(Figure 2.3). Viral and microbial communities have been reported to covary [178].
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The viral diversity reported by PHACCS reflected the diversity of Bacteria in the

sediments, water, and human digestive tract [179,180].

10
Community SP MB MBSED FEC
Best rank- Bower Taw Sowerlaw Lognormal, logarithmic, Bowerlaw
abundance form power law & exponential *
Model equation n;=0.0203 x i-0.641 n; = 0.0263 x i-0.728 nj=1.36 x 10 -4 nj = 0.0480 x i-0.783
Richness 3350 genotypes 7180 genotypes 7340 genotypes 2390 genotypes
1 Evenness 0.932 0.900 1.00 0.873
Most abundant i - - .
genotype 2.03 % 2.63% 0.0136 % 4.80 %
Sha“ri‘ggé“:"ie”er 7.57 nats 7.99 nats 8.90 nats 6.80 nats

Genotype abundance (%)

0 1000 2000 3000 4000 5000 6000 7000 8000
Ranked genotypes

Figure 2.3: Rank-abundance form and a-diversity of four viral communities as
determined by PHACCS. SP: Scripps Pier seawater, MB: Mission Bay seawater,
MBSED: Mission Bay sediments, FEC: human feces. Taken from Angly et al.
(2005) BMC Bioinformatics 6:41 under the terms of the Creative Commons

Attribution License.
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CHAPTER 3: B-DIVERSITY

This chapter reviews my study which contrasted the composition and
distribution of viruses from four different oceanic provinces around North
America. This work was published by PLoS Biology [50] and is attached in

Appendix 2.

Measures of B-diversity

B-diversity is the difference in diversity between two samples and provides a
guantification of differences in species composition between samples taken at
different locations or times. Estimating the o-diversity of environmental viral
metagenomes with PHACCS provided an opportunity to characterize the viral
diversity patterns that exist in nature and determine what large-scale forces
shape the evolution and distribution of viruses. However, a-diversity fails to
reflect how viral communities with the same a-diversity differ from each other.

This aspect is captured by measuring (3- diversity.

There are many metrics for assessing B-diversity, both quantitative and

gualitative. The simplest quantification of p-diversity is the total number of

species unique to each sample j: =2 (M,~C) , 0<B<) M, ,where M;
‘ j

J

is the richness of the j " sample and C is the number of species common to all
samples. A higher [-diversity represents larger compositional differences

between communities. In addition, indices of [-diversity have been developed
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based on species presence/absence data and include:

« Whittaker's measure [105]: W =T /M , where T is the combined

richness of all communities, and M is their average richness.

+ Sgrensen similarity index [181]: S=2C/(M,+M,) , for two
communities with richness M; and Mz. It ranges from 0 (no common
species, largest B-diversity) to 1 (all species are in common, lowest [3-

diversity).

Some B-diversity metrics incorporate the relative abundance of the species in

the calculation of diversity, including:

z‘rli_rZi
« Bray-Curtis index [182]: BC=<——— with r; the number of

Z (rli+r21)

i

individuals belonging to species i in sample j.

* Morisita-Horn index [183]: This index is robust to variations in sample size

2Zr11r21 Z’"?i
1

where A, =~ and R; the total
R

and diversity. MH =

2
J

(A1+A2> Rl RZ
number of individuals in sample j.

B-diversity is a fundamental attribute of biodiversity, but it is rarely studied
across large spatial scales. A global survey compared the [-diversity of
amphibians, birds, and mammals and showed that areas of high B-diversity
coincide for these animal taxa, indicating that these regions are highly
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susceptible to global climate change [184]. In addition to directing conservation
efforts, these findings suggest that there are global processes which affect
multiple taxa and lead to high levels of differentiation in natural communities.
Viral B-diversity has yet to be characterized on a global scale, and it is unclear if

viruses are under the same environmental pressures as macroorganisms.

Distribution of marine viruses

Genomic studies have found that phages represent the largest unexplored
reservoir of sequence information in the biosphere [156,185,186]. In
metagenomic surveys of viruses, the number of sequences from unidentified
species was very high, as was the viral richness [48-58,119,185]. These data
suggest that the composition of distinct marine viral communities is very different,
I.e. that their -diversity is large. However, phages are small and non-motile, and
are passively transported by currents and winds [18,187-190]. Furthermore, the
widespread presence of phage sequences indicates a possible global distribution
for some phages [191,192]. Therefore, viruses in the marine environment could

be cosmopolitan (have low B-diversity).
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By comparing the community composition and 3-diversity of four marine viral
communities, | determined that phage communities are cosmopolitan, i.e. they
exhibit low B-diversity [50]. Four viral metagenomes from distinct marine regions
(Arctic Ocean, British Columbia Coast, Sargasso Sea and Gulf of Mexico) were
sequenced, bioinformatically analyzed and then compared and contrasted to
determine whether they contained mostly unique or mostly shared phage
species. | used the Basic Local Alignment Search Tool (BLAST) [92] to identify

phages with similarities to known phage genomes. The presence or absence of
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Figure 3.1: A) B-diversity contour plot for four marine viral metagenomes, B)
Method controls. Arctic: Arctic Sea, SAR: Sargasso Sea, BBC: British Columbia
coast, GOM: Gulf of Mexico. Taken from Angly et al. (2006) PLoS Biol 4(11):e368

under the terms of the Creative Commons Attribution License.
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these known phages was plotted on the Phage Proteomic Tree [155], and
UniFrac [193] was used to determine whether or not the communities were
statistically different. The communities were region-specific (i.e. significantly
different) despite sharing over a third of the identified phage species. This
approach was limited by the large number of phages that are unsequenced and
that were therefore overlooked in the analysis. To characterize the -diversity of
the four viral communities, | used a similarity-independent method called
MAXIPHI (described below). All phage genotypes were shared, with a third of the
most prevalent genotypes having a different abundance-rank (Figure 3.1A). Low
B-diversity supports the notion that marine phages are cosmopolitan and that the
unique nature of the viral communities from these marine regions is due to the

same phages being present in different abundances.

Assembly of contigs and cross-contigs

The MAXIPHI method was central to the characterization of viral B-diversity
and the conclusions of this study. | participated in the development of this novel
tool and its validation using controls (Figure 3.1B). The method builds on the
contig spectrum modeling approach detailed in Chapter 1. By using cross-
contigs, contigs containing reads from multiple metagenomes (during the
assembly of multiple metagenomes simultaneously) (Figure 3.2), the method
extracts information about genotypes that are present in several viral

communities.
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Figure 3.2: Forming a cross-contig spectrum requires assembling sequences
from multiple metagenomes and removing contigs that contain sequences from
only one metagenome. Adapted from Angly et al. (2006) PLoS Biol 4(11):e368

under the terms of the Creative Commons Attribution License.

To create contig spectra and cross-contig spectra in an automated manner, |
designed and programmed Control In Research on CONtig spectra,

CIRCONSPECT (http://sourceforge.net/projects/circonspect). The
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CIRCONSPECT software assembles one or several metagenomes using TIGR
Assembler [194] and calculates their contig or cross-contig spectrum. Since

sequence assembly is a O(n?) problem (Figure 3.3) [195], it was more memory-
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Figure 3.3: Effect of the number of sequences to assemble on the resource

usage of TIGR Assembler.

efficient to implement a bootstrap procedure that repetitively assembles a
random subset of the metagenomic sequences (e.g. 10,000 sequences) instead
of all sequences (Figure 3.4). This partially alleviates the problem of large contigs
broken into several smaller ones because of the assembler's inability to deal with
the heterogeneous sequence information from multiple genomes. Further,
provided a sufficiently large number of repetitions is performed, the bootstrap
method covers the totality of the sequence data, from predominant genotypes to
rare genotypes, and generates an accurate mean contig spectrum. When

comparing different viral communities, using the same number of sequences in
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Figure 3.4: Flowchart of CIRCONSPECT, a program to automate the creation of
contig spectra and cross-contig spectra in a controlled fashion.
the random subsets is also useful to compare metagenomes with a very different
number of sequences. Another feature of CIRCONSPECT is the control of
sequence length by trimming long sequences and discarding small ones. With
this feature, one can force all the sequences to assemble to have the exact same
length, e.g. 100 bp. This avoids the assumption that a distribution of sequences
of different lengths is correctly represented by an average value in the average
sequence length parameter used in PHACCS. Considering that distinct
sequencing technologies used in metagenomics yield sequences of very different
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lengths (e.g. ~100 bp for GS20 pyrosequencing, ~700 bp for Sanger
sequencing), normalizing sequence length to the lowest common denominator in

CIRCONSPECT allows to compare metagenomes without introducing bias.

In Sequencher, a minimum of 98% identity over 20 bp was used to assemble
contig spectra [1,48,51-53,55,56,102]. TIGR Assembler implements a greedy
overlap-layout-consensus algorithm [194] very different from the assembly
algorithm of Sequencher. To accommodate for differences in the functioning the
two programs, Circonspect's assembly parameters for TIGR Assembler were
reevaluated and changed to 35 bp minimum overlap (and 98% minimum identity)

[50,57,58,196].

Modeling the B-diversity of viral communities

MAXIPHI measures [-diversity in a quantitative way since it considers not
only the species present but also what their abundances are. The method
considers two types of differences in community structure that discriminate
between different viral communities: the number of genotypes common to all
communities (percent shared), and the number of the common genotypes with a

different abundance-rank (percent permuted) (Figure 3.5).
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Figure 3.5: B-diversity in MAXIPHI is modeled using the number of genotypes in
common and their abundance-rank. The three theoretical cases presented here
are: two identical communities (same genotypes in the same abundance)(left),
communities sharing the same genotypes but not in the same abundance
(middle), and communities with no genotypes in common (right). Adapted from
Angly et al. (2006) PLoS Biol 4(11):e368 under the terms of the Creative

Commons Attribution License.

The B-diversity, or percent of species shared and percent of species

permuted, was evaluated by performing Monte-Carlo simulations on the cross-

32



contig spectrum. Over the parameter space (s,p) representing the percent of
shared species, s, and percent of species with a permuted abundance rank, p,

many Monte-Carlo repetitions were performed in order to calculate a mean ¢,

and variance Ufl of the predicted cross-contig spectrum. A quasi- likelihood

L(s,p) of matching the observed cross-contig spectrum 5; , used to generate a

AT A2
contour map of L, was obtained by 1nL(s,p)=—Z(C‘72—A(';q) . The overall
q g,

procedure is summarized as a flowchart (Figure 3.6).

The novel method to estimate the (B-diversity of viruses from metagenomic
data described above was essential to determine that the [3-diversity of viruses in
the oceans is low. The ability to estimate [(-diversity of viral communities
complements the a-diversity estimates to provide a more comprehensive view of

the distribution of viral species in the environment.
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Figure 3.6: Overview of the Monte-Carlo procedure used in MAXIPHI. Adapted
from Angly et al. (2006) PLoS Biol 4(11):e368 under the terms of the Creative

Commons Attribution License.
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CHAPTER 4: AVERAGE GENOME LENGTH

This chapter describes Genome relative Abundance and Average Size
(GAAS), a novel metagenomic tool | developed to accurately estimate species
relative abundance and average genome length for viral and microbial
communities. This work was provisionally accepted for publication in PL0oS

Computational Biology in August 2009 and is attached as Appendix 3.

Influence of the average genome length on diversity estimates

Genome size refers to the amount of nucleic material in a genome,

expressed as a weight or a number of base pairs. The models implemented in
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Figure 4.1: Effect of varying the average genome length on the richness
estimates of PHACCS for the Sargasso Sea virome.
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PHACCS to obtain diversity estimates use the average length of the genomes in
a viral community as an input parameter. | tested varying the average genome
length from 10 to 100 kb in the PHACCS analysis of the Sargasso Sea virome.
Average genome length had a strong influence on the richness estimates.
Different rank-abundance models responded differently to changes in average
genome length, and the richness was changed by as much as ~40X in the case
of the logarithmic model (Figure 4.1). An accurate average genome length is

needed to maintain precision in the a-diversity computation.

Methods for estimating average genome length

The genome length of viruses spans three orders of magnitude (Figure 4.2),
from the 1.7 kb circular single-stranded DNA genome of a Circovirus [197] to
over 1.7 Mbp for the Mamavirus [27]. Pulsed Field Gel Electrophoresis (PFGE)
has been used previously to characterize the genome size of viruses in natural
communities. In various environments (e.g. rumen, freshwater, feces), PFGE
determined the presence of phages with a genome length ranging from 10 kb to
850 kb [52,198-202]. In the oceans, viruses from 8 to 533 kb were detected using
this method and the relative intensity of the bands on the PFGE gel allowed the
estimation of an average of 50 kb [172,173,178,203,204]. Not having precise
estimates of viral average genome length for more than the marine environment
adds uncertainty to the exploration of viral a-diversity in new environments using

PHACCS. In addition, PFGE's precision is dependent on the experimenter and is
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time-consuming [205], making it impractical for large-scale studies. These

limitations illustrate the need for a software solution to estimate average genome

length in individual metagenomes.

Genome length (bp)
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Figure 4.2: Upper and lower limits for the genome size of macroorganisms,
microorganisms and viruses. | compiled the data on this graph from various
sources: the NCBI RefSeq database, the ICTVdb, the Microbe Wiki, the Fungal
Genome Size Database, the Plant DNA C-values Database and the Animal

Genome Size Database.
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A computational method, Effective Genome Size (EGS), was previously
developed to calculate the average genome length in environmental samples
using metagenomic data [206]. The EGS method relies on identifying selected
marker genes that occur only once per genome, regardless of genome length, so
that the total number of marker genes is inversely correlated with the average
length of the genomes in the sample. From the density D of these genes in an

environmental dataset, average genome length is calculated using the equation

EGS =

% , with K the read length (bp), and x, y and z parameters that

were calibrated using genomes of known size in public databases. The method
performed well for the calculation of bacterial and archaeal average genome
length. However, no set of markers is present in all viruses [154,155], and hence,

the EGS method is not adapted to the study of phages communities.

Biological implications of average genome length

Average genome length is more than a parameter for the determination of
viral diversity. For microorganisms, larger genome are characteristic of the
copiotroph lifestyle [207] and is strongly correlated with a larger array of genes
[208], used to process more resources [209]. The downside of a larger genome
IS a higher energetic maintenance cost and more complex regulation
mechanisms [210]. Therefore bacterial species with larger genomes may be

more adapted to environments with scarce but diverse resources, such as soll
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[211]. In concordance with this hypothesis, the EGS method demonstrated that
the average genome length of microorganisms was higher in soil samples than in
other samples (Sargasso Sea, whale falls, acid mine drainage) [206]. Average
genome length was also shown to be correlated with environmental complexity. It
Is not known whether the average genome length of viruses correlates with that

of microorganisms and whether it is an indicator of environmental complexity.

Average genome length from sequence similarities

| designed the GAAS program (http:/sourceforge.net/projects/gaas) to

calculate the average genome length of uncultured viral and microbial
communities, and also to provide more accurate estimates of community
composition. | used GAAS to estimate average genome size and composition for
metagenomes from diverse biomes and conducted a meta-analysis to determine
if viral average genome length covaries with microbial average genome length.
Complete details are given in Appendix 3. Briefly, GAAS is a novel tool that
performs BLAST local similarity searches [92] between the metagenomic reads
and a database of complete genomes to calculate average genome length. |
assumed that the length of the genome from which a metagenomic sequence
comes from is the same as that of the genome that it is similar to, because
genome length tends to remain constant within taxa [212]. GAAS implements
several methods described below that improve local similarity searches and

correct for sampling biases (Figure 4.3).
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Figure 4.3: Flowchart illustrating how GAAS calculates community composition

and average genome length.

E-values, or “expect values” [99], characterize how strong the similarity

between two sequences is. Typical metagenomic studies that use BLAST simply

use a cutoff E-value, that does not have an intuitive meaning, and that

corresponds to a different threshold when using different databases. In GAAS, |

used two criteria to select strong similarities likely to reflect sequence homology,

a minimum alignment similarity and relative length (or hit coverage [213]). The

40



alignment relative length, or ratio of the alignment length over the query
sequence length, is a way to remove short similarities, that are often similarities

to protein domains present in a large number of unrelated taxa.

After the initial filtering, only the top similarity (the one with the lowest E-
value) is usually kept for each metagenomic sequence. Instead, in GAAS, | kept
all similarities that passed the filter and gave multiple similarities for a given
metagenomic read different weights. Sequence similarity networks have used
weighted E-values before [214] but the weights were calculated differently here,
as inversely proportional to a per-genome expect value, i.e. an E-value

normalized to the length of the target genome instead of to the length of the

r

BLAST database used: W =g, ﬁ where s' is the “effective length” [215]

of the database (in number of residues), E. is the E-value between a

metagenomic sequence u and a target genome v, t/' is the effective length of the

target genome v, and g, is a constant such that Z W, =1

Another correction originates from the observation that random shotgun
libraries (e.g. metagenomes) are biased toward large genomes; the number of
sequences from a given species is proportional not only to its relative
abundance, but also to its genome length. While this is a well-known bias in
proteomics [216-218], metagenomic studies typically ignore this effect. My

correction consisted in normalizing the weights by the length of the genome to
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w
obtain accurate genome relative abundance f. f,=o t—“v where o is a constant

v

such that Z f;=1 ,andt,is the length of the target genome v (in bp).
j

To generate empirical confidence limits for length and relative abundance
estimates, a bootstrapping procedure was implemented in GAAS. Empirical
confidence intervals for genome relative abundance and average genome length
were calculated by repeating the computation many times using a random
subsample of the metagenome at each repetition. Confidence intervals were
taken as the weighted percentiles of the observed estimates, e.g. 5" and 95"

percentiles for a 90% confidence interval.

Method validation with simulated metagenomes

| validated the GAAS method using an extensive set of benchmarks (see
Appendix 3 for details). The benchmarks consisted of ~10,000 simulated
metagenomes, which were made with Grinder, a program | created and made
available at http://sourceforge.net/projects/biogrinder. Grinder produces random
shotgun libraries from complete genomes in a controlled fashion. The community
structure of the genomes is a parameter (e.g. power law rank-abundance curve),
and library parameters such as read length, coverage, sequencing error rate
allow to produce realistic metagenomes. By creating simulated metagenomes of
known composition, Grinder will help ground truth and improve metagenomic

techniques. Running GAAS on simulated viral metagenomes showed that the
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accuracy of GAAS estimates is higher than that obtained when using the
standard BLAST parsing method (keeping the top similarity only, not normalizing
by genome length). The benchmarks also demonstrated the applicability of

GAAS to microbial metagenomes and to sequences ranging from 50 to 800 bp.

Average genome length in four biomes

To characterize average genome length in aquatic, terrestrial, sediment and
host-associated biomes, | conducted a meta-analysis with GAAS using a large
set of 175 viral and microbial metagenomes (Figure 4.4), presented in more
details in Appendix 3. The average genome length changed significantly in
different environments. However, the average genome length of different
samples within a biome showed significant variations, suggesting that average
genome lengths are not representative at the biome level. The comparison of
average genome length of viruses and microorganisms sampled from the same
environment at the same time showed that they were independent, likely
reflecting how these organisms respond differently to environmental stresses.
Also, this suggests that, as opposed to microorganisms, average viral genome

length is not correlated with environmental complexity.
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Figure 4.4: The average genome length of viruses, Archaea and Bacteria, and
protists in different biomes as estimated by GAAS. Biomes were compared using
non-parametric Wilcoxon tests (except for the sediments due to the small number

of data points).
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CHAPTER 5: A COMPUTATIONAL WORKFLOW FOR

ESTIMATING VIRAL DIVERSITY

In the previous chapters, novel computational methods to estimate a-
diversity, B-diversity and average genome length from viral metagenomes were
discussed. The present chapter describes the synthesis of these different
methodologies into a workflow that allows the automated estimation of viral

diversity in metagenomes.

Biology and workflows

Biology has entered the age of information and relies heavily on computer
programs for mining data and solving problems [219,220]. The computational
aspect of biological research is referred to as bioinformatics, which largely
consists of developing algorithms and performing in silico experiments. With the
wealth of computational tools currently available, bioinformaticians can perform
increasingly complex experiments which can be used to formulate new research

hypotheses.

Bioinformatic experiments often represent a scientific workflow, a set of
independent programs used in combination to perform advanced processing of
data. A scientific workflow can be as simple as entering data into a website
providing a specialized algorithm, copying the output and pasting it into another

web-based program. With programming skills, one can use a more automated
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approach, installing the software locally and writing a script that runs the
programs and passes data between them. Dedicated programs such as Taverna
[221] or Kepler [222] make it easier to compose scientific workflows to automate

data analysis without programming knowledge.

Diversity workflow overview

The different independent computational elements necessary to estimate a-
and p-diversity, CIRCONSPECT, GAAS, PHACCS and MAXIPHI can be
integrated in a computational workflow to calculate the diversity of viral
communities. To calculate a-diversity, average genome length must first be
estimated using GAAS, which eliminates the need to rely on a hypothetical
average to input into PHACCS. CIRCONSPECT is used to create contig spectra
in an automated fashion from metagenomic sequences. Average genome length
and contig spectra are then input to PHACCS, which finally estimates a-diversity

(Figure 5.1).

Metagenome

PN

C/IRCONSPECT
Bootstrapped assemblies
Contig spectrum

GAAS
Normalized local similarities
Average genome size

PHACCS
Structure best fit model
Alpha diversity

Figure 5.1: Conceptual overview of the a-diversity workflow
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In the p-diversity workflow, the o-diversity of several metagenomes is
computed. In addition, their cross-contig spectrum is determined by
CIRCONSPECT. The community structure of all metagenomes predicted by
PHACCS and their cross-contig spectrum are used in MAXIPHI to determine [3-

diversity (Figure 5.2).

Metagenomes

RN

CIRCONSPECT

GAAS

Cross-contig spectrum
Contig spectra

Average genome size

PHACCS

Alpha diversities

MAXIPHI
Monte-Carlo simulation
Beta diversity

Figure 5.2: Conceptual overview of the B-diversity workflow

Implementation of the a-diversity workflow

CAMERA, the Community Cyberinfrastructure for Advanced Marine Microbial
Ecology Research and Analysis [94] is a platform that allows access to
metagenomes and tools for their analysis through a web interface. This platform
is supported by a 512-CPU cluster, 200 TB of storage, and is able to run BLAST

analyses and generate recruitment plots. In version 2.0 (currently in public
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preview phase at https://portal.camera.calit2.net/), the CAMERA software stack

was reorganized around a Service Oriented Architecture [223,224]. This
improvement makes CAMERA more flexible since the computing capacities are
dissociated from the hosted software and data. Metagenomics means something
different to different investigators and the new design of CAMERA better serves
the various needs of the metagenomic community with its implementation of

user-designed workflows.

Elle  Edit  Wiew Workflow Tools Window Help

@@\IQ\Iﬂ\moﬂ»\\-\l-l\w\lml\wu0\

Components \ Data |

Search

Circonspect Options Average Genome Size Parameters: PHACCS Options:
PN Director ®Size: 700 ®eValueCutoff: 1e-5 ®type: power
eMin_metaG_coverage: 1 @BlastAll: C:\blast\bin\blastall
eTrimsize: 100 ®DatabaseName: C:\Camera\all_viruses_nt.fa
®Seed: 644715020 ®SequenceFileName: C:\Camera\Ocean_Alaska_30000.fa
®BlastDB: C:\blast\database\all_viruses_nt.fa

Circonspect Results

PHACCS Results

AtachedFile
i f1= $SequenceFileName

Create PHACCS Input

Figure 5.3: The a-diversity workflow implemented using REST web services in
Kepler
In collaboration with the CAMERA staff, | composed the a-diversity workflow
in Kepler (Figure 5.3), with the individual programs (GAAS, CIRCONSPECT and

PHACCS) wrapped as Representational State Transfer (REST) web services
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[225] hosted on the CAMERA servers. Integration of the a-diversity workflow in
CAMERA now allows investigators to easily estimate the a-diversity of their

metagenomes using a web interface (Figure 5.4).

P

& camera

Marine Microbial Ecology -.‘r'

l Home ” Browse Data l’-l-bﬁ#{l Submit Data " Get Help l

Execute Workflow: Alpha Diversity (Rohwer) Workflows Menu:
* Home
LS ® New Workflow

el ® Current Jobs

ERS Download documentation ® Provenance Browser
Alpha diversity is the biodiversity within a particular area, community or ecosystem, and B
is usually expressed as the Species richness of the area. This can be measured by .
counting the number of taxa (distinct groups of organisms) within the ecosystem (eq. -
families, genera, species). However, such estimates of species richness are strongly -
influenced by sample size, so a number of statistical techniques can be used to correct ® CAMERA supported

for sample size to get comparable values

Workflows Help

“ Default Parameters ‘ Advanced Parameters |
JobName [My Workflow 07/11/2009 0f
Circonspect
Trim Size [100 |
Min Coverage [1 |
Repetitions (7 |
Size [1000 |
Seed (644715020 |
Fasta File 1 B Select sequence
Parameters
type power

Submit Workflow!

July 11, 2009
Figure 5.4: The web interface to the a-diversity workflow on CAMERA

(https.//portal.camera.calit2.net/)
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The pB-diversity workflow has not been composed yet since MAXIPHI's
Monte-Carlo computer intensive methodology must be modified before it can be

publicly released and executed on a large scale.

Revisiting previous diversity estimates

Using the diversity workflow, | re-estimated the a-diversity of eight viral
metagenomes previously analyzed in Angly et al. 2005 and 2006 [50,102]:
Scripps Pier (SP), Mission Bay (MB), Mission Bay Sediments (MBSED), Human
Feces (FEC), Arctic Ocean (Arctic), British Columbia (BBC), Sargasso Sea
(SAR), and Gulf of Mexico (GOM). My aim was to take advantage of the
improvements made to the estimation of viral diversity since 2002 [51] to identify

how the diversity estimates changed since their original publication.

These metagenomes had very different characteristics (Table 5.1), with
metagenomes containing from 500 to over 700,000 sequences, and an average
sequence length ranging from 100 to 700 base pairs. Due to these differences,

computation parameters were selected to minimize bias as described below.
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Table 5.1: Comparison of the characteristics of the eight viral metagenomes,

sequenced by synthetic chain terminator chemistry (Sanger) or Roche 454 GS20

pyrosequencing (Pyro).
Viral Biome |Sequencing| Number of Mean Total
metagenome method | sequences | sequence | metagenome

length (bp) size (bp)

SP Aquatic Sanger 1,064 616.7 656,168

MB Aquatic Sanger 873 706.0 616,304

MBSED Sediments | Sanger 1,156 635.4 734,497

FEC Host- Sanger 532 710.2 377,851

associated

Arctic Aquatic Pyro 688,590 100.2 68,969,258
BBC Aquatic Pyro 416,456 103.2 42,976,291
SAR Aquatic Pyro 399,343 105.4 42,090,100
GOM Aquatic Pyro 263,908 102.6 27,086,439

The average genome length of the viromes was calculated with GAAS using
tBLASTx against the NCBI RefSeq complete viral database with a minimum E-
value of 103. E-value based weights assigned to all significant similarities and
genome length normalization were used to further refine BLAST results for
average genome length calculation. The minimum relative alignment length was
set to 40% and the alignment similarity to 40%, which allowed the recovery of a
minimum of approximately 100 similarities for every metagenome. The estimated
average genome length differed from the 50 kb originally assumed and ranged
from 13.8 kb for the viruses in the Sargasso Sea to 71.8 kb for the viral

communities of Scripps Pier (Table 5.2). These results are consistent with
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previous reports of a large abundance of viruses with small genomes in the
Sargasso Sea [50] and the significant fraction of Myoviridae with large genomes

(>170 kb) detected in the Scripps Pier sample [51].

Table 5.2: Estimation of the average genome length of the viruses in the eight

communities using GAAS.

Viral Number of Number of similarities Estimated average
metagenome | similarities per sequence genome length (bp)
SP 300 0.282 71,786.2
MB 208 0.239 61,374.7

MBSED 652 0.564 58,863.4

FEC 91 0.171 28,875.7
Arctic 44,955 0.0653 67,035.0
BBC 35,741 0.0858 35,917.2
SAR 72,021 0.180 13,881.0
GOM 19,786 0.0750 51,994.6

Contig spectra were generated for all metagenomes using CIRCONSPECT.
A sample size of 500 random sequences was chosen to accommodate the
smallest metagenome analyzed (the fecal sample). Based on their length,
sequences were either discarded or trimmed at a random position so that only
sequences of 100 bp were assembled, a length slightly smaller than the average
sequence length in the metagenomes with the shortest sequences. The
assembly parameters for TIGR Assembler were a minimum overlap of 35 bp and
minimum similarity of 98%, as in [50,57,58,196]. Random sampling was
performed repeatedly until a coverage of 30x of the largest metagenomic library
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was achieved, i.e. over 22,000 repetitions. The resulting average contig spectra

are reported in Table 5.3. The contig spectrum obtained from the sediment

sample had the smallest contig degree, i.e. the largest number of sequences in a

contig was 2, as in [53]. Similarly to [50], the Gulf of Mexico sample had a contig

degree much larger than the other samples, 49 sequences.

Table 5.3: Average contig spectra of the eight viromes calculated using

CIRCONSPECT. All contig spectra were made from 500 sequences of 100 bp.

Viral metagenome

Average contig spectrum

SP 490.2277 4.7137 0.1008 0.0090 0.0013
MB 497.2539 1.3316 0.0269 0.0005
MBSED 499.8509 0.0746
FEC 493.3252 3.2448 0.0609 0.0006
Arctic 496.8570 1.5514 0.0131 0.0002
BBC 493.1876 2.3319 0.4799 0.1213 0.0307 0.0084 0.0022
0.0004 0.0001
SAR 487.9026 4.9393 0.5991 0.0888 0.0113 0.0013 0.0002
GOM 451.9391 4.0380 1.5288 0.9714 0.7159 0.5491 0.4218
0.3292 0.2553 0.2010 0.1566 0.1318 0.1057 0.0850
0.0720 0.0603 0.0521 0.0419 0.0356 0.0315 0.0261
0.0210 0.0189 0.0153 0.0125 0.0100 0.0104 0.0067
0.0064 0.0048 0.0046 0.0026 0.0028 0.0021 0.0019
0.0012 0.0010 0.0007 0.0007 0.0004 0.0004 0.0003
0.0004 0.0003 0.0001 0.0001 0.0002 0.0001 0.0001

The average genome lengths, average contig spectra and minimum contig

overlap lengths were used in PHACCS to determine the a-diversity of the eight

viral communities. All six rank-abundance models available in PHACCS were

tested: power law, exponential, logarithmic, broken stick, niche preemption and
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lognormal. The three best overall rank-abundance forms (with the smaller overall
error) were, in order, the logarithmic, power law, and lognormal forms. The new
estimates of richness, evenness and Shannon-Wiener index using the

logarithmic model are presented in Table 5.4.

Table 5.4: Comparison of the a-diversity estimates of the eight viromes obtained
using the original method, and the updated computational workflow. The
estimates are derived from the logarithmic rank-abundance form, that fitted the
different contig spectra overall the best. N/A: PHACCS could not estimate the

diversity of these samples.

Original estimates New estimates
Viral Richness | Evenness | Shannon- Richness | Evenness Shannon-
metagenome Wiener index Wiener index

SP 3,350 0.932 7.57 113 0.931 4.40
MB 7,180 0.900 7.99 994 0.943 6.51
MBSED 7,340 1.00 8.90 3,700 1.000 8.22
FEC 2,390 0.873 6.80 278 0.972 5.47
Arctic 532 0.964 6.05 257 0.971 5.39
BBC 129,000 | 0.918 10.8 >500,000 N/A N/A
SAR 5,140 0.905 7.74 4,280 0.922 7.71
GOM 15,400 | 0.851 8.21 <1 N/A N/A

The richest community (British Columbia) remained the richest after
reanalysis, with several hundred thousands of genotypes. The previously least
diverse community, from the feces sample, became the second least diverse,

replaced by the Scripps Pier community (113 genotypes, 4.40 nats), for which an
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order of magnitude richness change occurred during reanalysis. The reanalysis
of another low diversity community, from the Arctic sample, did not change its
status as a low-diversity samples, with an estimated 257 genotypes and 5.49
nats. As in the original analysis the diversity of viruses in sediments (MBSED)

was found to be higher that in the water column above (MB).

In Figure 4.1, the logarithmic rank-abundance form was found to be the most
sensitive to the average genome length parameter of PHACCS and increased
average genome size in the logarithmic model produced increased richness
estimates. The changes in diversity due to the reanalysis with the improved
diversity workflow (Table 5.4) do not seem to be directly correlated with the
changes in the estimated average genome size. Therefore, it is likely that
changes in diversity estimates were driven by a combination of providing the
average genome size estimated by GAAS, and of using the same random subset
size and sequence length for all metagenomes in CIRCONSPECT. The
community structure and a-diversity of two metagenomes, from the Sargasso
Sea and Gulf of Mexico, could not be precisely determined, for reasons

discussed below.

Improving the a-diversity workflow accuracy

Since the original contig spectrum modeling study [51], many methodological
advances described in this thesis have been added to the viral diversity

estimation methodology so that it is possible to compare metagenomes of a very
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different nature. The impossibility of finding a precise community structure for
some metagenomes (Table 5.4) suggests that there are still limitations. Possible
ways to address these issues and improve the accuracy of viral diversity

estimates are described below.

In the reanalysis of the Gulf of Mexico sample, no rank-abundance model
could be determined. The contigs assembled from the Gulf of Mexico were larger
than in the other samples, and further, the sequence dinucleotide entropy
suggests that the Gulf of Mexico sequences had a different composition from the
sequences in the other samples (Figure 5.5). | hypothesize that some contigs
were formed between sequences containing a low nucleotide complexity,
invalidating the assumption that only sequences from the same genotype

assemble together (non-chimeric contigs). This issue could be resolved in

0.06 T T T T T T T T T
Arctic —
SAR —
GOM — /o
+ BBC — ~ \ .
0.04| AN .
> ;Y V|
[5) ]
S |/ |
S - I i
o
o
[T i
0.021 1/ W .
1 il
/‘;. j
0.00 L e g ] ] 1 1 N I
2.0 2.2 2.4 2.6 28

Sequence dinucleotide entropy
Figure 5.5: Entropy of the sequence dinucleotide frequencies for the four marine
viromes.
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CIRCONSPECT by filtering out sequences of low complexity either based on

their dinucleotide entropy or as calculated by the DUST algorithm [226].

The accurate assembly of metagenomic sequences is critical for obtaining
proper contig spectra. All assemblers work differently and no assembler has
been specifically designed for metagenomic sequences. The features required
for the inclusion of an assembler in CIRCONSPECT are the ability to take a user-
specified minimum overlap length and minimum similarity percent. Recent
investigations of TIGR Assembler show that it does not strictly respect the values
entered by the user for these assembly parameters. Recently developed
assemblers such as SR-ASM [195] and Minimus [227] are good candidates for

the replacement of TIGR Assembler and inclusion in the diversity workflow.

Regardless of the assembler used, the proper assembly of sequences from
single species into contigs depends on the stringency of the assembly
parameters. Originally, a manual test on 11 phage genomes determined that a
minimum of 98% similarity over at least 20 bp was sufficient to prevent the
formation of most chimeric contigs [51] with Sequencher. Today, there are over
2,000 reference viral genomes available from the NCBI [228]. It would be
valuable to perform a more systematic analysis of assembly parameters and how
changing them affects the number of rightful and chimeric contigs formed.
Grinder and CIRCONSPECT implement code that would help in that task. The
optimal parameters to produce contig spectra would be the minimum overlap and

identity values that minimize the number of chimeric contigs while forming a
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sufficiently large number of contigs.

Another limitation of the current implementation of the diversity workflow is
that the Community Lander-Waterman model cannot account for contig length.
For example, a contig with high coverage (a large number of sequences in a
short contig) indicates a genotype with large relative abundance. However, using
only a contig spectrum, a high coverage contig is not distinguishable from a
longer contig with an identical number of sequences. Improvements in diversity
estimation should consider modeling contig coverage [229] and length [230] to

complement the contig spectrum model.

The modifications suggested above could improve the accuracy of diversity
estimates. Quantifying the gains could be done by assuming viral communities of
given community structure and genome sequence (from NCBI RefSeq), and
simulating random shotgun libraries (metagenomes). Grinder, the tool | created
to benchmark the GAAS method, could be used to groundtruth the a-diversity
methodology. Similarly, simulated metagenomes with a varying number of
sequences in common could be produced to quantify how accurate the [3-

diversity estimates are.
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Chapter 6: CONCLUSIONS

Many methods to analyze metagenomes are limited by their reliance on
similarities to existing sequences. In this thesis, similarity-independent
techniques based on metagenomic read assembly were developed to

characterize the a and B-diversity of uncultured viral communities.

Innovative methods for characterizing viral diversity

PHACCS is the first software that uses the Community Lander-Waterman
equation to model the expected abundance of contigs (contig spectra) based on
metagenomic data. PHACCS characterizes the rank-abundance distribution and
o-diversity (richness, evenness, Shannon-Wiener index) of uncultured
environmental viral communities. In order to process the data easily, it was
necessary to automate the creation of contig spectra, a process which was
implemented in CIRCONSPECT. CIRCONSPECT was expanded and further
developed to produce cross-contig spectra, contigs made of sequences from
different metagenomes and used in MAXIPHI. The MAXIPHI method addressed
B-diversity, a generally unexplored area of viral metagenomics. B-diversity was
characterized by modeling the percentage of shared species and species shifted
in abundance between viral communities, as estimated by Monte-Carlo
simulations. Finally, to avoid assumptions about average genome length used in
the modeling of community structure, | created GAAS, which provides estimates

of genome length spectrum and average, based on finding local similarities. The
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robustness of the GAAS estimates relies on the accurate determination of the
relative abundance of genomes by normalizing for statistical biases such as
genome length. By creating a workflow for the calculation of viral diversity on the
CAMERA community platform, investigators without bioinformatic expertise can

obtain diversity estimates.

Viral diversity modeling started when Sanger sequencing was the standard
sequencing technology. High-throughput sequencing appeared in the last few
years, bringing larger datasets with different characteristics such as shorter reads
and different types of sequencing errors. The computational methodologies
developed in this thesis have been updated through several generations of
sequencing platforms and viral diversity was calculated from very different

metagenomes while avoiding the introduction of potential biases.

Insights into the ecology of viruses

The methods discussed in this thesis have been applied to numerous
environmental metagenomes to gain insights into viral diversity and ecology. This
work corroborates previous evidence that viruses are the most diverse biological
entities on Earth; a richness from 102 to 10° viral genotypes was reported in the
marine habitat [49,50,102]. The B-diversity analysis of marine viruses suggests
that oceanic viruses are cosmopolitan, even though they form location-specific
assemblages [50]. The calculation of average genome length in different biomes

supports these results, by demonstrating large variability in the community
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structure of viruses from different marine locations (Appendix 3). This variability
between sites may be shaped in part by the existence of a latitudinal gradient of
richness for marine viruses [50], suggesting that viruses obey some of the large
scale laws that apply to microorganisms and macroorganisms. The soil is an
environment reported to harbor a large diversity of micro-organisms [231]. Viral
communities in the soil were even richer than in any other biome analyzed,
ranging from 103 to 107 species [48]. From these numbers, the projected world
diversity of viruses could be as high as 108 species. Insights were obtained into
the evolution of viral genomes; the independence between the average length of
viral and microbial genomes indicates that identical environmental pressures
have different consequences on the evolution and genome length of these

organisms (Appendix 3).

Future computational and biological prospects

Estimates of diversity are sensitive to the average genome length parameter.
PFGE and GAAS results indicate that the distribution of genome length in a viral
community is broad and multimodal. Using an average length to represent a
distribution of genome lengths may lead to a loss of precision or cases where the
best community structure cannot be estimated. Future efforts to redesign contig
spectrum modeling might avoid assuming an average genome length by using a
Markov Chain Monte Carlo (MCMC) approach that allows every viral genome to

have its own length. Such an MCMC approach is feasible [232], and while it
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would be more computationally intensive, it would likely produce more robust
estimates of community structure and diversity. Tests of the diversity workflow on
microbial metagenomes have been inconclusive so far. This is perhaps because
microbial genomes are composed of several replicons, e.g. their main genome
and the different plasmids they carry. These microbial replicons differ in length by
orders of magnitude and their sequences assemble independently. A MCMC
modeling approach that uses a dynamic length for the genome or replicon length
may predict the diversity of microorganisms in metagenomes in the same way as
for viruses. Taking this MCMC approach further, it would be possible to rescind
the assumption that viral communities follow an empirical rank-abundance form
and let each replicon take an arbitrary relative abundance. This would resolve the
controversial issue of determining what rank-abundance model is best to model

environmental phage communities.

The a and (-diversity methods only characterize taxonomic diversity, or the
diversity of species. Recently, tools to detect open reading frames in short
metagenomic sequences were introduced [233-235]. These tools could extract
metagenomic sequences that code for genes and, used as the input for the
diversity workflow, these sequences could thus allow calculating the functional
diversity, or diversity of genes in metagenomes. Studies suggest that ecosystem
stability is correlated more directly with functional diversity than with taxonomic
diversity [116,236-238], and the simultaneous estimation of taxonomic and

functional diversity will allow to test if it applies to viruses and microorganisms in
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addition to macroorganisms. Potentially, metagenomic taxonomic and functional
diversity could also help determining the “health” of a particular ecosystem

[239,240].

The application of diversity measures to environmental viral samples
supports the existence of patterns of diversity for viruses. The richness of viruses
in the oceans seems to obey a latitudinal gradient [50] and preliminary estimates
of viral diversity in the Line Islands (not shown) are in agreement with the
intermediate disturbance theory. Metagenomics has been growing fast and the
number of locations from which a viral metagenome is available is steadily
increasing (Figure 6.1). This provides the opportunity for applying the workflow of
diversity to a larger number of metagenomes and add statistical confidence to
our observations of diversity patterns. While many viral metagenomes are from
the marine environments, other biomes have been characterized, including host-
associated and terrestrial systems. Viral communities from subterranean
environments and ambient air have yet to be studied using metagenomics.
Sampling these two remaining major biomes, should be a priority to get an
accurate picture of the diversity of viruses on Earth and calculate their global

richness.

63



oy

icelang

United
Kingdom

akhstan

y U Unite'
States

India

Madagascar

New #Argentina
Zealand
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Abstract

Background: Phages, viruses that infect prokaryotes, are the most abundant microbes in the
world. A major limitation to studying these viruses is the difficulty of cultivating the appropriate
prokaryotic hosts. One way around this limitation is to directly clone and sequence shotgun
libraries of uncultured viral communities (ie., metagenomic analyses). PHACCS http://
phage.sdsu.edu/phaccs, Phage Communities from Contig Spectrum, is an online bioinformatic tool
to assess the biodiversity of uncultured viral communities. PHACCS uses the contig spectrum from
shotgun DNA sequence assemblies to mathematically model the structure of viral communities and
make predictions about diversity.

Results: PHACCS builds models of possible community structure using a modified Lander-
Woaterman algorithm to predict the underlying contig spectrum. PHACCS finds the most
appropriate structure model by optimizing the model parameters until the predicted contig
spectrum is as close as possible to the experimental one. This model is the basis for making
estimates of uncultured viral community richness, evenness, diversity index and abundance of the
most abundant genotype.

Conclusion: PHACCS analysis of four different environmental phage communities suggests that
the power law is an important rank-abundance form to describe uncultured viral community
structure. The estimates support the fact that the four phage communities were extremely diverse
and that phage community biodiversity and structure may be correlated with that of their hosts.
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Background

Most environmental viruses are phages (a.k.a., bacteri-
ophages) that infect prokaryotic cells, both Bacteria and
Archaea. On average there are about ten phage particles
per host cell [1]. Extrapolations from the number of
prokaryotes 2] make phages the most abundant biologi-
cal entities in the biosphere with an estimated 103! viral
particles. By killing prokaryotes, phages can strongly
impact microbial community biomass [3] and structure
[4]. Despite their importance, very little is known about
phage biodiversity.

Traditionally, the study of environmental phage diversity,
dynamics, and ecology requires growing prokaryotes on
microbiology plates and infecting them with phages.
However this standard technique is limited by the fact that
only a small fraction of environmental microbes are read-
ily cultured [5] and that each phage species generally only
has a very narrow number of possible microbial hosts [6].
In addition, even if it is possible to observe phages with an
electron microscope, pictures are not sufficient to identify
species because of the low taxonomic resolution of viral
morphology. Cultivating and observing phages do not
permit to assess environmental phage diversity.

Biodiversity is composed of richness, or total number of
different species 7], and evenness, expressing the relative
abundance of each species [8]. The Shannon-Wiener
index quantifies diversity as a single term combining rich-
ness and evenness [9]. A high richness and high evenness
together represent a high level of diversity.

A new approach to accessing natural microbial diversity is
through the creation of shotgun sequence libraries from
environmental metagenomes (sum of all genomes) [10-
14], so that the genetic information of each genotype of
the community is recorded, qualitatively (sequence) and
quantitatively (abundance of each sequence). The com-
munity is analyzed by sequencing a part of the library. The
metagenomic data used here is the contig spectrum, deter-
mined by assembly of environmental random shotgun
DNA fragments. The contig spectrum is a vector contain-
ing the number of contigs (groups of overlapping
sequences) of size ¢ (number of sequences in the group)
|10]. The stringency of the assembly parameters can be
varied so that only sequences belonging to the same gen-
otype overlap. Thus, for one genotype, the bigger the con-
tigs in the contig spectrum, the higher the number of
copies and the more abundant this genotype. Based on
this, the contig spectrum provides important information
about the abundance and diversity of genotypes within a
community.

In this work, we present PHACCS (PHAge Communities
from Contig Spectrum), an online computational tool to

http://www.biomedcentral.com/1471-2105/6/41

assess the diversity and structure of environmental viral
communities from the contig spectrum of shotgun
sequence data. The PHACCS program and its predictions
are first described and then used to analyze four environ-
mental viral communities.

Implementation

Platform and software

The standalone core mathematics for PHACCS consists of
Matlab (MathWorks Inc., Natick, MA.) scripts that are
partly based on the previous works [10-12]. A CGI (Com-
mon Gateway Interface) script written in PERL (Practical
Extraction and Report Language) is used to input and out-
put data from and to an HTML (Hyper Text Markup Lan-
guage) interface. PHACCS was developed and tested on a
Linux-based (2.6.6 kernel) personal computer running
PERL 5.8.3 (with CGI module), Matlab 6.5.0, and Apache
2.0.50 web server.

Obtaining a contig spectrum

The input for PHACCS is the contig spectrum, a vector
containing the number of g-contigs (groups of ¢ overlap-
ping sequences) from the in silico assembly of random
shotgun DNA fragments. Detailed information about the
way to get viral metagenomes and their contig spectrum
can be found in [10-12]. Briefly, viral communities were
isolated via tangential flow filtration and cesium chloride
centrifugation, and their DNA was extracted. The DNA
was randomly fragmented, used to create a linker ampli-
fied shotgun library [15] and clones were sequenced
(between 500 and 1200 for studies [10-12]). The
sequence assembly program Sequencher (Gene Codes
Corp., Ann Arbor, ML) was used to assemble phage
sequences having at least 98% identity on at least 20 bp
[10]. The stringency of the assembly parameters was
experimentally determined so that only fragments
belonging to the same genotype assemble together.
Closely related phage genomes (e.g., coliphages T3 and
T7) can be discriminated using these parameters [10]. The
number of contigs of each size was then recorded to gen-
erate the contig spectrum. The number of sequences in the
largest contig defines the contig spectrum degree.

Modified Lander-Waterman algorithm

PHACCS uses a modified version of the Lander-Waterman
algorithm [16] to predict a contig spectrum from assumed
population parameters. The original Lander-Waterman
algorithm is a way of predicting the contig spectrum of a
randomly fragmented genome (e.g., a single viral species)
given: i) the length L of the genome, ii) the number N of
DNA fragments studied, iii) the average size s of these frag-
ments, and iv) the minimum overlap length o for the
sequence assembly [16]. Given this data, the predicted
values of the following quantities are calculated:
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® Probability p of an overlap: p= 1 - e™/ L withx =s-0

 Probability w, for a fragment to be part of a g-contig
(overlap of ¢ fragments):

1w, = gp1-1 (1- p)?

* Expected number of fragments ¢, that are part of a g-con-
tig: ¢, = Nw,

* Contig spectrum: [¢; %ﬁ]

The modified Lander-Waterman algorithm is a generaliza-
tion of the original algorithm to a group of M different
genotypes (e.g., a whole viral community) [10]. The pre-
dicted contig spectrum can be calculated as the sum of the
contig spectra for each individual genotype i.

* Expected number of fragments ¢, part of a g-contig:

M M
g = Zn;wq; with Zn,- =N for 1<i<M

i=1 i=1
w,;is the probability for a fragment to be part of a g-contig
for the genotype i and n; is the expected number of frag-
ments for the genotype i.

In this modified algorithm, since there are several geno-
types, an assumption about their underlying distribution
within the community in terms of abundance has to be
made.

Relative rank-abundance forms

PHACCS offers six basic functional forms of relative rank-
abundance for biological populations: the power law, log-
arithmic, exponential, broken stick, niche preemption,
and lognormal distributions.

The first three functional forms are empirical models that
were designed to describe an asymptotic drop-off in the
abundance [17]:

® Power: n;= ai*for1 <i<M

® Logarithmic: n, = a(log(i + 1))t for 1 <i<M

® Exponential: n;=aefor1 <i<M

The parameter a represents the abundance of the most
abundant genotype, b is a parameter related to the even-

ness, and M is the number of different genotypes in the
community.

http:/fwww.biomedcentral.com/1471-2105/6/41

Two ecological models are based on a partitioning of
resources between species [18,19]:

N&1
® Broken stick: n; :HE_ forl <i<M
x

x=i

* Niche preemption: n;= Nk(1 - k) - 'and ny = N(1 - k)M-
Hforl1<isM-1

The broken stick function has only one parameter, M, and
assumes a random distribution of resources, whereas in
the niche preemption function, each species takes only a
fraction k of the remaining resources in the environment.

The sixth functional form is the lognormal distribution. It
is the most commonly used species distribution, with
numerous theoretical justifications in the literature
[20,21]. The relationship is specified as species density
versus abundance and needs to be transformed to give a
rank-abundance relationship. Our rank-abundance form
was obtained by dividing the area under the normal dis-
tribution with standard deviation o into M equal area
slices and associating an abundance n; with the i-th slice
by calculating an average value for the abundance within
the slice. The result is:

Lognormal: n; = e with m, =2 (112 —etinl2)
o iemF P '
=1
1 2 - L
o=, Ly =~2ef Y| S vef(—) |and ty,, = +ee for 1<i<M
1 i+1 J {A«i J(ﬁ)} M+1

where erf is the error function and erf! its inverse.

Modeling the viral community structure

The PHACCS algorithm is represented in Figure 1. The
experimentally determined contig spectrum of a sample
and the other parameters needed for the modified Lander-
Waterman algorithm are the input. For a given rank-abun-
dance function, assumed values of the function parame-
ters (number of different genotypes, as well as b for the
power law, logarithmic, exponential and lognormal distri-
butions and k for niche preemption) are used to predict a
contig spectrum using the modified Lander-Waterman
algorithm. To determine the model fitness, the error
between the actual and the predicted contig spectrum is
calculated as the variance-weighted sum of squared devia-
tions, L being the contig spectrum vector length and ¢, the
experimental number of fragments that belong to a g-con-

tig:

L (Cq' -¢ 15 M
- Emor: F=Y —1 1" with V= Zniwqi(l_ Wei)
g=1 q i=1
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Input:
Contig spectrum and
various parameters
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Modified Lander-

Assume a total number
of genotypes *

Assume a rank-
abundance function *

Assume a model Waterman algorithm

parameter value **

A

Change the total number of genotypes

Change the rank-abundance function

Minimum error for this
rank-abundance function?

oA
5 Predict the contig
spectrum

Y

Compute error between
actual and predicted
contig spectrum

Change the model parameter val

Minimum error for this
number of genotypes?

Output for each function:
- Rank-abundance model
- Diversity estimators

Figure |

Flowchart of PHACCS. *The rank-abundance functions and the range of genotypes to use can be defined by the user. **This
parameter represents b for the power law, logarithmic, lognormal and exponential distributions and k for the niche preemp-

tion. This parameter is not applicable to the broken stick.

The best descriptive model for a community structure is
defined as the one with the smallest error. For each rank-
abundance function tested, the global minimum for the
error is found by optimizing the value of the function
parameters.

The values of the error can be roughly interpreted as loga-
rithms of odds ratios of the observed contigs being seen
from community distributions of the specified forms.
Thus a value of 0.1 for the difference in errors between
two models corresponds to an odds ratio of e®! which is

about 11:10 between the two models. This means that the
model with the smallest error is about 10% more likely to
give rise to the observed data.

Predicting the viral community diversity

For each rank-abundance form, the best model is used by
PHACCS to assess diversity. The richness § is estimated as
equal to the number of different genotypes M found in the
community structure model. The abundance of the most
abundant genotype is also directly determined from the
model as the highest rank-abundance wvalue. The
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Table I: Test data used for the study of the phage communities with PHACCS [10-12]. The average fragment sequence length was
determined using Sequencher after sequence trimming (maximum one ambiguity on 99 bp at each extremity). A 98% identity for a
minimal overlap length of 20 bp was used for sequence assembly with Sequencher to obtain the contig spectra. The average genome

length was determined by pulse field gel electrophoresis [12, 22].

Community SP (Scripps Pier) MB (Mission Bay) MBSED (Mission Bay FEC (Fecal)
Sediments)
Contig spectrum * 1021 1720 ... 841 1320.. 115220.. 48218220..
Avg. community genome size 50 kb 50 kb 50 kb 30 kb
Avg. shotgun fragment length 663 bp 663 bp 570 bp 699 bp

* The number of trailing zeros was set to 10 for each contig spectrum.

Shannon-Wiener index, which is a measure for diversity,
is calculated using the relative rank-abundance values r; =
n/N of all individual genotypes i [9]:

S
® Shannon-Wiener index H' (in nats): H = —Z r;Ing
i=1

The evenness is derived from H' [18]:
* Evenness £: E =H'/H,,,.=H'/In §

Comparison of four phage communities

As a case study, four viral metagenomes obtained from
previous studies and belonging to different ecosystems
were tested. Two of these were phage community samples
of near-shore surface seawater from Scripps Pier (SP) and
Mission Bay (MB), San Diego, California, USA [10]. The
two other samples are sediments from Mission Bay
(MBSED) [11] and human feces (FEC) [12]. A compila-
tion of the data for these samples is presented in Table 1.
These four datasets were analyzed with PHACCS using all
six rank-abundance models.

Results

Best abundance forms

The errors obtained from the contig spectrum analysis of
the different samples are presented in Table 2. For each
sample the best descriptive model of the community
structure is the one with the smallest error. The SP com-
munity was best described by using the power law (error
of 1.84), closely followed by the lognormal (error of 1.93)
and logarithmic (error of 2.57) distributions. The expo-
nential and niche preemption distributions had poor fits,
with errors of 12.0. The MB community modeling gave
qualitatively the same results. Power law was the best fit
with an error of 2.15 and exponential and niche preemp-
tion were last with an error of 16.2. The FEC community
also had the same sequence of best fitting rank-abundance
forms. The best model was given by using the power law
form (error 9.79). Exponential and niche preemption did

a poor job of explaining the data, coming in last with an
error of 60.0. For the MBSED community, the power law,
lognormal, logarithmic and exponential distributions all
tied for the best fit (with an error of 0.0104), whereas bro-
ken stick gave the worst fit (error of 0.0157).

Phage community diversity and structure

The different diversity indicators and the rank-abundance

curves obtained by using the best descriptive model for
each sample are summarized in Figure 2. The MBSED
community was the richest with an estimated 7340 differ-
ent phage genotypes. MB had ~7180 different genotypes,
SP ~3350, and FEC was the least rich sample with ~2390
different genotypes. MBSED was the most even commu-
nity with the maximum possible evenness of 1.00 (flat
rank-abundance curve), followed by SP (evenness of
0.932), MB (evenness of 0.900), and FEC (evenness of
0.873). The most abundant genotype represented 4.80%
of the total community for FEC, 2.63% for MB, 2.03% for
8P and around 0.01% for MBSED. Based on the Shannon-
Wiener diversity index, MBSED was overall the most
diverse community with 8.90 nats, then MB (7.99 nats),
SP (7.57 nats), and finally FEC (6.80 nats), the least
diverse community.

Discussion

Using PHACCS

PHACCS is publicly accessible at http://phage.sdsu.edu/
phaccs and the source code is freely available [see Addi-
tional file 1]. The biological information PHACCS needs
as an input is the viral community's contig spectrum, aver-
age genome size, average shotgun DNA sequence length,
and the minimum overlap length used for the assembly.
PHACCS has two HTML interfaces. The basic interface
assumes default values for marine phage communities
(average genome size of 50 kb, average fragment length of
650 bp and minimum overlap of 20 bp). All rank-abun-
dance forms (power law, expoential, logarithmic, lognor-
mal, broken stick and niche preemption distributions) are
tested for up to 100,000 genotypes. In the advances inter-
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Table 2: Best descriptive rank-abundance form for the viral communities as determined by PHACCS. The error represents the
variance weighted sum squared deviation between the experimental and the predicted contig spectra. For each community, the best
descriptive function is the one that minimizes the error. The best fit obtained for each rank-abundance form was ranked according to
the error in ascending order.

SP MB MBSED FEC
Rank Model Error  Rank Model Error  Rank Model Error  Rank Model Error
I Power law 1.84 | Power law 2.15 I Power law 0.0104 I Power law 9.79
2 Lognormal 1.93 2 Lognormal 236 | Lognormal 0.0104 2 Lognormal 10.2
3 Logarithmic 2.57 3 Logarithmic 2.88 | Logarithmic 0.0104 3 Logarithmic 10.3
4 Broken stick 10.7 4 Broken stick 14.6 | Exponential 0.0104 4 Broken stick 522
5 Exponential 12.0 5 Exponential 16.2 5 Niche preemption  0.0139 5 Exponential 60.0
5 Niche preemption  12.0 5 Niche preemption  16.2 6 Broken stick 0.0157 5 Niche preemption  60.0
10+
Community SP MB MBSED FEC
Best rank- Lognormal, logarithmic,
abundance form Power law Power law power law & exponential * Power law
Model equation nj= 0.0203 x i 0.641|n; = 0.0263 x i 0.728 nj=1.36 x 10 -4 nj = 0.0480 x i-0.783
Richness 3350 genotypes 7180 genotypes 7340 genotypes 2390 genotypes
— 1 — Evenness 0.932 0.900 1.00 0.873
o
s M";;:gt”y”p?”t 2.03 % 263% 0.0136 % 4.80 %
[}
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Figure 2

Comparison of the structure and diversity of the different viral communities using PHACCS. The graphics represent rank-
abundance curves, where the abundance of each genotype is plotted versus its abundance rank, the genotype of rank one being
the most abundant. The curves were obtained by plotting the PHACCS rank-abundance values of the different communities on
the same axis. *The predicted community structure for MBSED was the same for the lognormal, logarithmic, power and expo-
nential rank-abundance forms. As a consequence, the diversity predictions were also the same.
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Figure 3
Screenshot of PHACCS' advanced web interface.

face (Figure 3) the user can change all biological and com-
putational parameters.

PHACCS analyses are computer intensive. On a dual-
Opteron™ server, the computation for the SP sample takes
~5 minutes. The broken stick and lognormal rank-abun-
dance forms account for most of the computation time

(data not shown). Increasing the range of genotypes to
search dramatically increases the time needed to complete
the analysis (data not shown).

PHACCS estimations about the virus community are: i)
structure — best descriptive rank-abundance form, model
equation and error, and ii) diversity - richness, evenness,
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¢ Project home page: http://phage.sdsu.edu/phaccs

e Operating system(s): Unix based system for PHACCS
and its web interface. Platform independent for PHACCS
core.

¢ Programming language: Matlab (for the core scripts)
and Perl

¢ Other requirements: For the interface: CGLpm Perl
module, ppmtogif, webserver program (to use PHACCS as
a web service)

® License: GNU GPL
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Viruses are the most common biological entities in the marine environment. There has not been a global survey of
these viruses, and consequently, it is not known what types of viruses are in Earth’s oceans or how they are distributed.
Metagenomic analyses of 184 viral assemblages collected over a decade and representing 68 sites in four major
oceanic regions showed that most of the viral sequences were not similar to those in the current databases. There was
a distinct “marine-ness” quality to the viral assemblages. Global diversity was very high, presumably several hundred
thousand of species, and regional richness varied on a North-South latitudinal gradient. The marine regions had
different assemblages of viruses. Cyanophages and a newly discovered clade of single-stranded DNA phages
dominated the Sargasso Sea sample, whereas prophage-like sequences were most common in the Arctic. However
most viral species were found to be widespread. With a majority of shared species between oceanic regions, most of
the differences between viral assemblages seemed to be explained by variation in the occurrence of the most common
viral species and not by exclusion of different viral genomes. These results support the idea that viruses are widely

dispersed and that local environmental conditions enrich for certain viral types through selective pressure.
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Introduction

Most marine viruses are phages (bacteriophages) that kill
the heterotrophic and autotrophic microbes (both Bacteria
and presumably Archaea) that dominate the world’s oceans
[1]. Phages and the other major microbial predator guild,
nanoflagellates, control the numbers of marine microbes to a
concentration of about ~5 X 10° cells per ml of surface
seawater [2,3].

Phages affect microbial evolution by inserting themselves
into genomes as prophages. Prophages often account for
most of the difference between strains of the same microbial
species [4], and they can dramatically change the phenotype
of the hosts via lysogenic conversion. For example, many
nonpathogens and pathogens only differ by prophages that
encode exotoxin genes [5]. Phages also affect microbial
evolution by moving genes from host to host. It has been
hypothesized that most of the orphan open reading frames
(ORFans) in microbial genomes are actually of phage origin
[6]. Phages may also affect microbial evolution by Kkilling
specific microbes. Various Lotka-Volterra models, called
“kill-the-winner,” predict that as one microbial strain
becomes dominant, its viral predator kills it and leaves
open a niche that can be used by a related strain that is
resistant to the phage [7,8]. This model may explain the
enormous microdiversity observed in microbial commun-
ities [9].

The advent of whole-community genome sequencing (i.e.,
metagenomics) is rapidly changing the way viral and micro-
bial diversity are assayed. Using this approach, it is possible to
rapidly characterize the metabolic diversity and community

%" PLoS Biology | www.plosbiology.org

structure of any microbial ecosystem [10-19]. We studied the
marine viral metagenome (virome) of four oceanic regions.
The viromes were obtained by pyrosequencing uncultured
viral assemblages that were integrated over 4,600 km in
distance, 3,000 m in depth, and over a decade in time in order
to characterize them and identify patterns of viral distribu-
tion and diversity.

Materials and Methods

Samples and Sequencing

Samples were collected from four oceanic regions (Figure
1). Briefly, the viral samples were concentrated on tangential
flow filters (30-100-kD cutoff), distributed into 50-ml tubes
and stored at 4 °C in the dark. A single sample was collected
from the Sargasso Sea (labeled SAR) on 30 June 2005
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Figure 1. Sampling Sites

The circles represent the sampling locations in the Sargasso Sea (SAR),
Gulf of Mexico (GOM), British Columbia (BBC), and the Arctic Ocean. The
number of samples taken at each location and combined for sequencing,
as well as the date and depth range, are shown in the boxes.

DOI: 10.1371/journal.pbio.0040368.9001

Chloroform was added to this sample to stop microbial
growth. Integrative samples, representing multiple sites and
times, were assembled from the Gulf of Mexico (labeled GOM;
13 sites; 42 individual samples), the British Columbia coastal
waters (labeled BBC; 38 sites; 85 individual samples), and the
Arctic Ocean (labeled Arctic; 16 sites; 56 individual samples).
These samples represent the combined viral assemblages of
four oceanic regions over approximately one decade (sample
details are described in Protocol S1).

Viral particles were purified using a combination of
filtration and density-dependent centrifugation ([10]; htep:l
scums.sdsu.edufisolationhtml, accessed 15 September 2006).
The cesium chloride gradient was designed to recover virions
with densities from 1.35 g ml™ o 1.5 o mI™!. Viral DNA was
isolated by a formamide/CTAB extraction [20], and the
resulting DNA was amplified with Genomiphi and sequenced
using pyrophosphate sequencing (454 Life Sciences, Bran-
ford, Connecticut, United States) [21] (see Protocol S1 for
details on the technology). Each Genomiphi reaction started
with 100-150 ng of DNA, above the 10 ng recommended by
the manufacturer. A total of 181,044,179 base pairs (bp) of
DNA sequence data was generated from the four libraries
(SAR, 42 Mbp; GOM, 27 Mbp; BBC, 43 Mbp; and Arctic, 69
Mbp). The difference in library size was due to differences in
number of successful reads during the pyrosequencing. The
1,768,297 sequences had an average length of 102 bp. The
GOM, BBC, Arctic, and SAR metagenomes are deposited on
the SDSU Center for Universal Microbe Sequencing website
at (http:/lscums.sdsu.edu/phage/Oceans, accessed 15 Septem-
ber 2006).

Bioinformatics

The metagenome sequences from each of the libraries were
compared to the SEED nonredundant database and environ-
mental database using BLASTX [22]. The SEED includes the
GenBank database supplemented with other complete and
draft genome sequences. The environmental database con-
sists of the microbial assemblages from the Iron Mountain
acid mine drainage [16], Sargasso Sea [17], whale fall [18], and

" PLoS Biology | www.plosbiology.org
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Minnesota farm soil [18]. All large-scale computational
analyses were performed on the Terraport and National
Microbial Pathogen Data Resource cluster at Argonne
National Laboratory. Individual analyses were performed on
a 12-node Orion desktop cluster (Orion, Santa Clara,
California, United States).

These comparisons were supplemented with more exten-
sive TBLASTN and with TBLASTX comparisons [22] of either
selected portions of the data against the complete non-
redundant database or the whole library compared to
boutique databases. The same cutoff E value was always used
for the same database and BLAST search method. In addition,
the sequences were compared to the phage and prophage
sequences from 510 genomes of the phage genome database
(RA Edwards, unpublished data). A FASTA file of these
genomes is at httpiscums.sdsu.edu/phage/Oceans.

Taxonomic Composition of the Metagenomes

In an approach similar to previous work [10-12], the best
similarity for each metagenomic sequence was automatically
parsed and assigned as “known” if there was a significant
similarity (£ < 107%) to a sequence from the nonredundant
nucleotide database, else “environmental” for a significant
similarity to any environmental database sequence, and else
“unknown™ (if there was no significant similarity to any
database). The number of similarities in each group was then
counted (Figure 2A). These numbers were also averaged for
the four samples. In a second step, the sequences from the
“known” group were classified as viral, bacterial, archaeal, or
eukaryotic based on their highest similarity (Figure 2B). To
assess the contribution of the prophages (often similar to
bacterial sequences), TBLASTX was used to compare the
sequences against the complete phage genome sequences.
Any significant similarity in the previous four taxonomic
groups that was also similar to a prophage sequence was
assigned to the prophage group instead. The prophage
sequences for these analyses were extracted from complete
microbial genomes. A complete list is available at the
supporting website (http:/iscums.sdsu.edu/phage/Oceans).
The average of these numbers for the four samples was also
calculated.

Assembly and Verification of Single-Stranded DNA, the
chp1-Like Microphage from the Sargasso Sea

The single-stranded DNA (ssDNA) chpl-like microphage was
partially assembled from all of the sequences that had
significant TBLASTX similarities (E < 107%). The assembly
parameters were aminimal match percentage of 85% and a 20-
bp minimum overlap using Sequencher 4.0 (Gene Codes, Ann
Arbor, Michigan, United States). These sequences alone did not
result in the assembly of a complete genome due to areas with
low similarity to known chpl-like microphage. To complete
the assembly, batches of sequences from the Sargasso Sea
sample were added to these assemblies until complete coverage
was obtained (the consensus sequence is in Protocol 51). The
PCR primers SARssDNAF (5" TGC GGA GAA TAT GGT GAT
GA 3'), SARssDNARI (5’ CGGTTATTACGC CTGTCGTT 3",
and SARssDNARZ2 (5" CCA TGG TAG GGC AGA GGT AA 3')
were designed based on the consensus sequence. APCRwas run
against the original Sargasso Sea sample DNA. The reaction
mixture (50 pl total volume) contained target DNA, 1 mM of
each primer, and 1X FideliTaq master mix (USB, Cleveland,
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Figure 2. Composition of the Assemblage Genome Sequences as Determined by Similarity to Known DNA and Protein Sequences

(A) The percent of “known™ sequences compared to the SEED and environmental databases. A sequence was considered “known™ if it had a significant
similarity (€ < 10°%) to the SEED, else “environmental” if it had a similarity to any environmental database, and else “unknown”.

(B) Breakdown of the “known™ sequences into viral (both eukaryotic and bacteriophages), prophage, Bacteria, Archaea, or Eukarya.

DOI: 10.1371/journal.pbio.0040368.g002

Ohio, United States). The thermocycler conditions were: 5 min
at 94 °C; 30 cycles of 1 min at 94 °C, 1 min at 65 °C - 0.5°C per
cycle, 3 min at 72°C; and 10 min 72 °C. Positive PCR products
were sequenced for verification of sequence length, and
identity was confirmed using TBLASTX.

Permutation Tail Probability Tests of Phylogenic Similarity
between Phage Assemblages

Because the sequences did not originate from a single
genetic locus, the evolutionary relationships could not be
determined by using standard alignment-based phylogenetic
analyses. To determine phylogeny, the sequences were first
mapped to the Phage Proteomic Tree based on their best
TBLASTX similarity. The version of the Phage Proteomic
Tree used here contained 510 complete phage genomes
(http:fscums.sdsu.edu/phage/Oceans) and was constructed as
described previously [23]. Permutation tail probability (PTP)
was then used to infer phylogenetic similarity among the
phage assemblages. The PTP test uses phylogenetic parsimony
to determine whether a given characteristic correlates with
phylogeny [24]. Briefly, if a sequence had a best similarity to a
phage genome on the Phage Proteomic Tree, it was scored on
a tree using Phylogenetic Analysis Using Parsimony software
(PAUP) [25]. The number of steps that would be required to
produce a tree from one sample to another was then
determined. To assign significance, this value was compared
to a distribution produced by randomizing the input tree
10,000 times.

Genetic Isolation by Distance of the Phage Assemblages

Isolation by Distance Web Service (IBDWS) ([26]; http:l
biome.sdsu.edufibdws) was used to test for a correlation
between the geographic distance between two samples and
the genetic divergence between viral assemblages. This online
software uses Mantel tests to determine whether marine
phages in closer physical proximity have greater genetic
similarity (as measured by ®@gy) than those separated by large
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geographic distances. For these tests, the current datasets
were combined with data from the California coast [10]. The
Arlequin program [27] was used to calculate ®s1. The Bgr
statistic compares the phylogenetic diversity within each
assemblage to the total phylogenetic diversity of the
combined assemblages using the equation:

Qg = (07 — Ow)/0r (1)

where Op is the total phylogenetic diversity of two assemb-
lages and Oy is the phylogenetic diversity within each
assemblage or population. A ®gy value close to zero means
there is complete overlap in the phylogenetic diversity,
whereas values greater than zero indicate increasing levels
of phylogenetic differentiation up to a value of 1, indicating
complete differentiation.

Assembly and Mathematical Modeling of Viral
Assemblage Diversity

To estimate viral diversity, sets of 10,000 random sequences
from each oceanic region were assembled using TIGR
Assembler [28] with a minimum overlap length of 35 bp, a
minimal match percentage of 98% and no alignment error in
32 bp to identify overlapping sequences (contigs) [10]. The
Perl script used to automate this task is available at http://
scums.sdsu.edu/phage/Oceans. Average contig spectra were
calculated (Figure S3) over ten repetitions, and the maximum
likelihood assemblage structure of the marine viral assemb-
lages was determined using mathematical rank-abundance
models in PHAge Communities from Contig Spectra
(PHACCS) ([29]; http:/biome.sdsu.edufphaces). Random sub-
samples of the metagenomes were used instead of the totality
of the whole metagenomes, because PHACCS analyses are
more robust at low coverage [10,11,29]. The diversity
estimates for the best-fitting assemblage model were used
for each oceanic region. Detailed graphical explanations of
these procedures are given in Protocol S1.
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Table 1. Number of Similarities to Phage Genomes and Groups of Interest in the Four Metagenomes

Group of Interest Phage Species

Marine Region

SAR GOM BBC Arctic
Cyanophage Prochloro. marinus ¢ P-SSM2 4661° 5897 11907 148"
Prochlore. marinus ¢ P-S5P7 44937 81° 86 16
Prochloro. marinus ¢ P-SSM4 1759° 263* 587% 51
Synechococcus ¢ S-PM2 1107° 196* 4747 54
Prophage Br. melitensis 16M ¢ Brucl pro-¢ 12 1152 92 700?
Yersinia pestis ¢ Yers2 pro-¢ 12 60 34 386"
Escherichia coli ¢ CPA-6 pro-d 4 52 24 364%
Agro. tumefaciens ¢ Tum2 pro-¢ 14 43 55 2817
Escherichia coli ¢ CP037-7 pro-¢ 6 40 1 240°
Xy. fastidiosa ¢ Xpd5 pro- 34 36 23 187"
Escherichia coli ¢ CP037-4 pro-¢ 3 29 1 146°
Mesorhizobium loti ¢ Meso1 pro-¢ 32 35 176° 56
Pseudo. putida ¢ PP03 pro-d 397 57% 96 1
chp1-like microphage (ssDNA) Bd. bacteriovorus ¢ MH2K 1835% 20 115 0
Chlamydia ¢ 4 17577 5 119 [4]
Chlamydia & 3 15727 9 119 0
Chlamydia psittaci ¢ 2 5687 2 29 0
Chlamydia psittaci ¢ chpl 519% 16 60 0
Chlamydia ¢ CPAR39 pro-¢ 15487 14 112 [4]
Miscellaneous Salmonella ¢ epsilon15 56 41 172% 11e*
Burkholderia thailandensis ¢ E125 7 29 29 11
Roseobacteria S1067 ¢ SIO1 360 409 4657 36
Rhodothermus marinus ¢ RM 378 301 93 206 20
u-protecbacteria ¢ JLOO1 333 45 197° 55
Bordetella ¢ BIP-1 128 62° 167° 63
Pseudo. aeruginosa ¢ PaP3 123 55 1617 10

*The ten most abundant similarities are noted for each sample.

Prochlore., Prachlorococcus; Br, Brucella; Agro., Agrobacterium; Pseudo,, Pseudomonas; Bd,, Bdellovibrio.

DOI: 10.1371/journal pbio.0040368.1001

To analyze the degree of similarity between the viral
assemblages, the amount of overlap between the assemblages
was determined by assembling a mixed sample of 10,000
fragments obtained by pooling 2,500 fragments from each
region. The fact that fragments from one region assembled
with fragments from another region indicates overlap
between the metagenomes of the two regions, and the extent
of this overlap quantifies the similarity. The contig spectrum
obtained from the mixed sample was modified in two respects
to give what is called the cross-contig spectrum (Figure S4).
First, any contig that contained fragments exclusively from a
single region was removed (i.e., only contigs that included
fragments from more than one region were counted). Thus
for the contigs of size g = 1, (),;, the number of g-contigs from
the pooled sample that included fragments from more than
one region, was calculated. Second, the number of 1-contigs
from each region that assembled with any fragments from
other regions was used as the number of 1-cross-contigs, C.
..] was then
compared to the mean cross-contig spectrum from simulated
mixtures of the four assemblages. To simulate such mixtures

The resulting cross-contig spectrum [Cy, Cy, Cs,

requires a model of which genomes with a certain rank and
abundance in one assemblage correspond to which genomes
in another.

There are many ways to envision morphing one assemblage
of genotypes (species defined on the genomic level by
assembly of sequences) into another. For these analyses, two
morphing modes were considered (Figure 85): (i) varying the
proportion of genotypes that were shared between assemb-
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lages and (ii) varying the proportion of the genotypes whose
abundance ranks were shuflled (i.e., subjected to a random
permutation). Using these two degrees of freedom, s (percent
shared) and p (percent permuted), Monte Carlo analyses were
performed to estimate the degree of morphing as measured
by these two parameters to find maximum-likelihood values
for s and p based on the closeness of the match to the cross-
contig spectrum found for the pooled sample.

The Monte Carlo simulations were all performed using the
best-fit models for each region. The cross-contig spectrum
based on the mixed sample was used to perform these
simulations (Figure S6). Each simulation included 861 pairs of
sand p values spanning a 21 X 41 grid between 0% and 100%
for each parameter. Each simulation randomly permuted the
abundance rank of p of the most abundant genotypes,
randomly assigned s of the genotypes to be shared, and
determined the resulting predicted cross-contig spectrum.
This was repeated 100 times for each combination of s and p
values. The entire simulation, including the selection of the
2,500 fragments from each region, was repeated eight times
resulting in 800 predicted cross-contig spectra for each
combination of parameter values. The mean ¢, and variance
&2 of these 800 values were then used to construct a quasi-
likelihood L(s,p)

Ao a2
Ll p)=—Y (& =&y

- (2)
T 2

= gl

of matching the observed cross-contig spectrum, thereby
generating a contour map of L as in [11]. This log likelihood
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would be expected if each cross-contig value were normally
distributed. The contour map of the quasi-likelihood land-
scape was produced from this grid of 861 quasi-likelihood
values. As a control, the whole procedure was repeated for all
regions with nonoverlapping subsets of sequences all taken
from the same geographical region (rather than from four
different regions).

Results/Discussion

“Community” is commonly defined several ways, including
“the species that occur together in space and time” [30] and
“an association of interacting populations™ [31]. Assemblage
is probably the most proper term to describe viral groups,
and most instances of “community” in the literature, both by
ourselves and others, is not correct. See [32] for a
disambiguation of some important ecological terms.

General Characteristics of the Marine Viral Metagenomes

On average, =91 % of the sequences were not significantly
similar to those in the extant databases (Figure 2A). A partial
explanation for the high percentage of unknowns is almost
certainly due to the shorter sequences (—100 bp on average)
that are generated by pyrosequencing at 454 Life Sciences.
Previous viral metagenomic studies that used Sanger
sequencing (—~650 bp fragments) found that =60% of the
sequences were unknowns [33]. The Arctic Ocean sample had
the highest percentage of known similarities (11%) to the
SEED database, mostly because of the large number of
prophage-like sequences (Table 1). Comparison of the marine
viral sequences to the environmental database did not yield a
significant number of new similarities compared to the SEED
database (~2% to the environmental database), with the
notable exception of the Sargasso Sea sample, where =9% of
the similarities were to the environmental database, presum-
ably because the major sources of sequences for the environ-
mental database were the Sargasso Sea microbial
metagenomes, originally collected in 2003 [17]. The overlap
between the viral metagenome and the microbial metage-
nomes raises several important points. First, a significant
number of viral sequences are retained on the larger-pore
filters, either as free viruses, proviruses, or in cells undergoing
a burst. The latter explanation was hypothesized by Delong et
al. [19], who observed a large number of viral similarities at
one depth at the Hawaii Oceanic Time-series (HOT) station.
Second, the microbial assemblages in the Sargasso Sea appear
to be relatively stable over prolonged periods (2 y). Finally,
the small amount of sampling and sequencing represented by
these two studies (~10'2 bp) is already constricting the
unknown sequence space of the Sargasso Sea. With the
continual decline in Sanger sequencing costs and introduc-
tion of large-scale pyrosequencing, metagenomic approaches
should be able to characterize global sequence diversity in a
relatively short period of time.

Among the fraction of sequences with similarity to the
SEED database, most of the “knowns” were similarities to
bacterial sequences in the Arctic, British Columbia, and Gulf
of Mexico samples (Figure 2B). This can be accounted for by
the following: (i) the larger number of microbial rather than
viral genomes in the database, (ii) unidentified prophages
within microbial genomes, (iii) the large amount of horizontal
gene transfer between phages and their hosts, (iv) phages
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Figure 3. Distribution of Similarities and Assembly Controls

(A) Distribution of similarities between the four metagenome samples to
the P. marinus ¢ P-S5P7 and Roseobacteria SI067 ¢ SIO1 genomes (as
determined by BLASTN analysis). The green bars represent the average
number of sequences averaged over 100 bp windows.

(B) Comparison of fragments from the Sargasso Sea metagenome
against the consensus ssDNA chpl-like microphage genome. The
consensus from this assembly is in the Protocol S1.

(C) PCR verification of chp1-like microphages in original SAR sample. PCR
primers were designed based on a consensus sequence from the
assembly shown in (B). SAR1 is a —900-bp fragment and SAR2 is a
~1,500-bp fragment.

DOI: 10.1371/journal.pbio.0040368.9003

carrying full genes from their host, as observed in sequenced
phage genomes [34,35], and (v) the overall larger size of
bacterial genes relative to viral genes, statistically increasing
the probability of sequencing and hitting them.

The sample from the Sargasso Sea was exceptional in that
the majority of “known” sequences were most similar to three
Prochlorococcus phage genomes (Table 1) originally isolated
from the same area of the ocean [34]. This finding suggests
that just a few phage genomes from novel environments will
greatly increase our understanding of viral diversity in these
environments. The distribution of BLASTN similarities along
the Prochlorococcus marinus ¢ P-SSP7 genome [34] is shown in
Figure 3A. There is almost complete coverage of the genome
within the Sargasso Sea sample. In contrast, the similarly sized
Roseobacleria SIO67 ¢ SIO1 genome [36], which was isolated
from near-shore waters in California, is only sparsely covered
in the Sargasso Sea sample, but has higher coverage in the
Gulf of Mexico and British Columbia samples. This supports
the idea that certain phage groups are more prevalent in
certain biogeographic regions. This general pattern was
reinforced by the observation of a number of phage genomes
and groups prevalent in different oceanic regions (Table 1).

The five most abundant putative viral-encoded enzymes
(Table 2) appear to be involved in scavenging host nucleo-
tides (e.g., riboreductases) and supporting host metabolism
through the infection cycle (e.g., carboxylyases and trans-
ferases). The viral fraction also contained psbA genes, which
encode the D1 protein of photosystem II in the cyanobac-
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Table 2. The Most Abundant Enzyme-Coding Genes in the Four Oceanic Viral Metagenomes

Marine Region Enzyme Name EC number Gene Occurrences
Sargasso Sea (SAR) Ribonucleotide reductase of class la (aerobic), alpha subunit 11741 89
Ribonucleoside-diphosphate reductase 1.17.4.1 75
Ribonucleotide reductase of class Il (coenzyme B12-dependent) 11741 50
GTP cyclohydrolase |, type 2 354.16 37
Adenine-specific methyltransferase 21.1.72 22
Gulf of Mexico (GOM) Formate dehydrogenase-O, major subunit 12.1.2 27
Carbamoyl-phosphate synthase large chain 635.5 25
Cytochrome c oxidase polypeptide | 193.1 24
Ribonucleotide reductase of class Il (coenzyme B12-dependent) 11741 23
DNA polymerase Il alpha subunit 2737.7 23
British Columbia coast (BBC) Ribonucleotide reductase of class Il (coenzyme B12-dependent) 11741 34
DNA polymerase lll alpha subunit 277.7 22
3-polyprenyl-4-hydroxybenzoate carboxylyase 41.1.- 18
Cytochrome ¢ oxidase polypeptide | 193.1 18
Ribonucleotide reductase of class la (aerobic), alpha subunit 11741 18
Arctic Ocean 3-polyprenyl4-hydroxybenzoate carboxylyase 41.1.- 205
DNA polymerase Ill alpha subunit 277.7 185
Cytochrome ¢ oxidase polypeptide | 193.1 175
Isoleucy-tRNA synthetase 6.1.1.5 157
Methylcrotonyl-CoA carboxylase carboxyl transferase subunit 64.1.4 155

EC number, Enzyme Commission number.
DOL: 10.1371 fjournal.pbio.0040368.t002

teria. The majority of sequenced cyanophages carry this gene,
and evidence is mounting that the cyanophages need the D1
protein for successful infection and replication [34,37,38].
The occurrence of psbA was lowest in the Arctic sample,
probably reflecting a decrease in the host and cyanophage
numbers in the colder environments.

Discovery of an Abundant Marine ssDNA Phage Group
The Sargasso Sea sample had a large number of sequences
(6% of the total; Table 1) with significant similarities to chpl-
like Chlamydiamicrovirus (Microviridae family). These viruses
are small ssDNA phages. Assemblies from these sequences
resulted in the near-complete genomes of several marine
Microviridae phages from the Sargasso Sea sequences (Figure
3B). To our knowledge, this is the first report describing the
presence of this phage group in the marine environment,
which was previously overlooked because the amplification
and cloning methods excluded ssDNA viruses. The only other
report of ssDNA viruses in the marine environment was a
Circovirus that infected diatoms [39]. However, the marine
sequences in this study did not show any similarity to that
virus. Sequences with significant similarity to the chpl-like
phages were observed less frequently in the British Columbia
(~10-fold less common than in SAR) and Gulf of Mexico
samples (~100-fold less common than in SAR). No sequences
from this group were found in the Arctic sample (Table 1 and
Figure 4). Primers were designed against these genomes and
appropriately sized DNA fragments were amplified from the
Sargasso Sea sample (Figure 3C). No amplicons were detected
in the Gulf of Mexico or British Columbia samples, suggesting
that they were present at numbers below the level of
detection in this PCR or had a divergent sequence. A
geographical constraint that limits the distribution of these
viruses would be most consistent with these results. However
concerns about sample amplification and storage bias make it
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impossible to accurately access the relative abundances of
these viruses at this point.

Every Phage Everywhere?

The distribution of similarities to the chpl-like Micro-
phage, P. marinus ¢ P-SSP7, Roseobacteria SIO67 ¢ SIO1, and
others in the viral-fraction suggests that viruses have
restricted geographical distributions similar to those ob-
served in micro- and macro-organisms [40,41]. This is in
contrast to studies that have shown that identical phage genes
are distributed throughout the biosphere and that phages
from soils and sediments can replicate in marine microbial
populations [3,42,43]. To determine whether all marine
phages are spread everywhere or if there is a strong
regionalization, three different approaches were used.

A new version of the Phage Proteomic Tree was con-
structed, and similarities from the samples were mapped onto
this tree (Figure 4). Eighty-four phage species were specific to
one marine region, whereas 45 were common to all four.
From the remaining phage species, 102 were found in several
oceanic regions. The phylogenetic parsimony of phages from
each sample was compared to the Phage Proteomic Tree
using the PTP tests, because viruses do not have a single
genetic locus conserved across all genomes. The PTP test
showed that the distribution of phages in the marine samples
is not random. First, marine phages are phylogenetically
distinct from the available genomes, suggesting a “marine-
ness” to the group as a whole (p < 0.0001; 10,000 random-
izations). Second, there was a significant difference between
phages from the different oceanic regions (5 < 0.0001; 10,000
randomizations), supporting a geographical specificity for
viruses despite the wide prevalence of some phage species.

An Isolation By Distance (IBD) approach demonstrated
that there was a significant positive correlation between
geographic distance (km) and genetic distance (as measured
by @gp) (Mantel test; Z==78.9; r = 0.585; p < 0.017) (Figure 5),
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Figure 6. Monte Carlo Simulation of Cross-Contigs between Metagenomic Samples

(A) For the intersample analysis, the maximum likelihood occurred at 35% fraction permuted and 100% fraction shared. (B) The maximum likelihood was
between 0% and 0.5% fraction permuted and 85% and 95 % fraction shared for the intrasample controls.

DOI: 10.1371/journal.pbio.0040368.9006

metagenome was the least genotype-rich (532 predicted
genotypes) and diverse (H' of 6.05 nats).

Being located on the west coast of the North American
continent, the coast of British Columbia is in an upwelling
area. It is also enclosed and fed by many rivers. These
conditions might importantly increase the diversity of
microbial communities and thus provide an explanation for
the very high viral assemblage diversity estimated in this
oceanic region. Omitting the BBC, the viral diversity of the
other regions (the Gulf of Mexico, Sargasso Sea, and Arctic
Ocean) correlate with the well-established North-South
latitudinal diversity gradient [44], with a larger diversity at
lower latitudes. Planktonic diversity patterns ol near-shore
versus off-shore (more diverse plankton assemblages off-
shore) [45] were not observed here; the large spatial scale of
the sampling probably masked this effect if present.

Assemblies of the mixed sample were used to predict global
viral diversity using PHACCS. A total of 57,600 different viral
genotypes in all four regions (H' of 9.8 nats) was estimated.
This number is smaller than the number of genotypes
predicted in the BBC sample, which may indicate an
undersampling for the mixed metagenome or be due to
some of the assumptions of the model. Taken together, these
data indicate that the global marine viral richness could be as
high as a few hundred thousand species, with a regional
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richness sometimes almost as high, likely because of migra-
tion processes.

Integrative Versus Single Samples

It was expected that the integrated samples would be more
even because it is assumed the viruses that were most
abundant at one spatial-temporal time point would be rarer
at another (“kill-the-winner” hypothesis). As summarized in
Table 3, the evenness of the single time point sample (SAR
0.905) fell in between that of the three integrated samples
(Arctic 0.964; BBC 0.918; GOM 0.851). Similarly, the predicted
richness (5140 genotypes) and diversity (H 7.74 nats) at the
single point represented by the Sargasso Sea sample fell in
between that of the integrated samples (richness 532-129,000;
H' 6.05-10.8 nats). Because of [actors with a supposedly
greater impact, like latitude, it is not clear that integrating
individual samples gave a greater depth of coverage.

Without a doubt, many interesting trends based on depth
and a wide variety of other spatial, biological, and temporal
parameters were missed by the integrative sampling used
here. However, this sampling does provide a useful overview
of the marine virome on a global and regional scale.
Currently, there are no real criteria as to what constitutes a
useful size or time scale for sampling natural viral assemb-
lages, so there is no particular advantage or disadvantage to
keeping samples separate or analyzing them as a metadataset.
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Rather the sampling scheme should be driven by the question
being addressed. Viral assemblages are interesting in their
own right, not just in context of their host communities.
However, future studies should also start cross-correlating
the viruses with their hosts. Of particular interest will be
determining if the “islands” and ORFans observed in micro-
bial genomes are represented in the virome [6,46].

Potential Sampling and Processing Biases

Sampling bias in the current datasets was primarily due to
loss of large viruses during filtering. Currently, there is no
experimental method to avoid this problem. The cesium
chloride gradients used here recover all known phage
groups, and essentially all the viral-like particles in the
starting samples migrate to the proper density in these
preparations (as observed by epifluorescence microscopy;
unpublished data). Unfortunately, the cloning methods used
here will not recover RNA viruses. Suttle et al. [47,48] have
shown that RNA viruses are present in the marine environ-
ment. Whereas most electron microscopy [49,50] and nucleic
acid-based studies [51] have not found RNA viruses in large
numbers, RNA viruses are still believed to be important
components of the marine virome that need additional
study.

Another potential source of bias is the different times that
the samples were stored before processing. Phage particles
are very stable and often stored for decades at 4 °C. This is a
commonly known lab phenomenon and is supported by the
observation that the oldest viral concentrates (~12 y old) in
this study had very high concentration of viruses (=107 viral-
like particles per ml). Different phages, however, may have
different decay rates under these conditions. This does not
seem to be especially problematic, because there is no
correlation between the types of viruses observed and the
storage time. For example, the Arctic and SAR samples are
the most recently harvested samples, yet they have the
biggest differences in terms of types of phages (Table 1).
Nonetheless, there may be effects of storage on the
composition of the viral assemblages. For this reason,
analyses based on absolute abundances of one specific virus
to another were avoided in this study. Instead, the presence
of a sequence in the metagenome was simply assumed to
mean that the virus was in the original sample (ie., an
OCCUTTENCE).

Whole-genome amplification techniques introduce biases
in the relative concentrations of different genomes. Tests of
Genomiphi by the manufacturer and others [52,53] have not

Marine Viromes

reported a significant bias in the amplification of circular
double-stranded DNA (dsDNA), with the exception of very
small dsDNA targets (<1 kb), which are much smaller than
the vast majority of marine viruses, and of ssDNA, which will
probably be a preferred target for the DNA polymerase.
Although not bias-free, Genomiphi is the most accurate
amplification method available [54]. Interesting trends
associated with viral assemblage structure may have been
missed because of our choice of using presencefabsence data
for the analyses presented here, but by being conservative
there should not be any effects of storage, amplification, and
sampling biases on our interpretations.

Conclusion

The metagenomic analysis of viral assemblages from the
Arctic Ocean, the coast of British Columbia, the Gulf of
Mexico, and the Sargasso Sea presented here has changed
our perception on the composition of viral assemblages in
the sea. First, there is clear evidence that the composition of
viral assemblages varies in different geographic regions
probably reflecting selective pressure. Previously overlooked
viral groups, such as ssDNA viruses and prophages, can be
major constituents of marine viral assemblages (Sargasso Sea
and Arctic Ocean, respectively). Second, global viral diversity
is high (possibly a few hundred thousand viral species), but
regional diversity can be almost as high due to viral
migration. This migration provides opportunities for global
exchange of DNA among viral genomes, as predicted by the
mosaic model [55]. Viral diversity also varied according to
latitude, with a higher richness at low latitudes. Finally, it
seems that although some viral species are endemic and
others are ubiquitous, the vast majority are widespread and
shared between several oceanic regions. Invasion and
replacement by new phages does not appear to be an
important structuring factor for these viral assemblages.
What sets different assemblages apart is likely the change in
abundance of its most abundant members, supporting to
some extent the old tenet “everything is everywhere, but, the
environment selects™ [56] for marine viruses.

Supporting Information

Figure S1. Frequency of Homopolymeric Tracts in the Four Marine
Viromes, the Complete Phage Genomes, and Twenty, Randomly
Chosen Microbial Genomes

The tracts from 3 nucleotides (nt) to 15 nt were counted and
normalized to the number of bases in each sequence. One 3-nt tract is

Table 3. Viral Assemblage Structure Predicted from Assembly of Metagenomic Sequences

Sample Richness Evenness Most Abundant Genotype (%) Shannon-Wiener Index
Arctic 532 genotypes 0.964 2.27 6.05 nats

BBC 129,000 genotypes 0918 7.28 10.8 nats

GOM 15,400 genotypes 0.851 133 821 nats

SAR 5140 genotypes 0.905 8.45 7.74 nats

Mixed 57,600 genotypes 0.895 9.34 9.81 nats

Ten separate assemblies of 10,000 sequences chosen at random from each library were performed for each sample. For the mixed sample, 2,500 randomly chosen fragments were used
from each library. The average contig spectrum was used to predict assemblage structure using PHACCS.

DOI: 10.1371journal.pbio.0040368.t003
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found approximately every 30 bp, whereas one 15-nt tract is found
approximately every 10 million bp. The 510 complete phage genomes
totaled 18,909,173 bp in length, and the microbial genomes totaled
22,110,123 bp in length. The lengths of the pyrosequenced libraries
are given in the text

Found at DOL: 10.1371fjnurnal.phin.DMOBG&sgDD] (1.3 MB TIF)

Figure 82. Relative Abundance of Phages in the Four Metagenomes

Because of way the samples were stored and the long storage time, the
distribution shown may not accurately reflect the reality.

Found at DOL 10.1371journal.pbio.0040368.sg002 (104 KB TIF)

Figure 83. Determining a Normal Contig Spectrum
Found at DOL: 10.1371journal.phio.0040368.sg003 (135 KB TIF)

Figure S4. Getting a Cross-Contig Spectrum.

Found at DOL 10.1371/journal.phio.0040368.sg004 (3.1 MB TIF)
Figure 85. The Possible Scenarios Considered in the Monte Carlo
Simulation to Explain the Observed Cross-Contigs

Found at DOL: 10.1371/journal.pbio.0040368.sg005 (143 KB TIF)

Figure 86. Analyzing a Cross-Contig Spectrum
Found at DOL 10.1371journal.pbio.0040368.sg006 (589 KB TIF)

Protocol S1. Details on Materials and Methods.
Found at DOL: 10.1371journal.phio.0040368.sd001 (39 KB PDF)

Accession Numbers

The Genome Projects Database (http:/fwww.ncbi.nlm.nih.gov/
Genomes) accession numbers for the sequences are 17765 (GOM),

References

1. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev
28: 127-181.

2. Wilcox RM, Fuhrman JA (1994) Bacterial viruses in coastal seawater: Lytic
rather than lysogenic production. Mar Ecol Prog Ser 114: 35-45.

3. Sano E, Carlson S, Wegley 1, Rohwer F (2004) Movement of viruses between
biomes. Appl Environ Microbiol 70: 5842-5846.

4. Canchay , Fournous G, Chibani-Chennoufi 8, Dillmann ML, Brussow H
(2003) Phage as agents of lateral gene transfer. CurrOpinMicrobiol 6: 417-424.

5. Davis BM, Waldor MK (2002) Mobile genetic elements and bacteri
pathogenesis. In: Craig NL. Gragie R, Gellert M, Lambowitz AM, editors.
Mobile DNA II. Washington (DC): ASM Press. pp. 1040-1055.

6. Daubin V, Ochman H (2004) Bacterial genomes as new gene homes: The
genealogy of ORTFans in E. coli. Genome Res 14: 1036-1042,

7. Thingstad TF, Lignell R (1997) Theoretical models for the control of
bacterial growth rate, abundance, diversity and carbon demand. Aquat
Microb Ecol 13: 19-27.

8. Hoffmann K, Rodriguez-Brito B, Breithbart M, Bangor D, Angly FE, et al.
(2005) The structure of marine phage populations. In: Kjelstrup S, Hustad
J. Gundersen T, Rosjorde A, Tsatsaronis G, editors. Trondheim (Norway):
Tapir Academic Press. 5 p.

9. Thompson JR, Pacocha 8, Pharino C, Klepac-Ceraj V, Hunt DE, et al. (2005)
Genotypic diversity within a natural coastal bacterioplankton population.
Science 307: 1311-1313.

. Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, et al. (2002)
Genomic analysis of uncultured marine viral communities. Proe Natl Acad
Sci U S A 99: 14250-14255.

11. Breitbart M, Felts B, Kelley S, Mahaffy J, Nulton J, et al. (2004) Diversity and
population structure of a nearshore marine sediment viral community.
Proc R Soc Lond Ser B Biol Sci 271: 565-574.

12, Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton ], et al. {2003)
Metagenomic analyses of an uncultured al community from human
feces. ] Bacteriol 85: 6220-6223.

13. Breitbart M, Rohwer F (2005) Method for discovering novel DNA viruses in
blood using viral particle selection and shotgun sequencing. Biotechniques
39: 729-736.

14. Edwards R, Rodriguez-Brito B, Wegley L. Haynes M, Breitbart M, et al
(2006) Using pyrosequencing to shed light on deep mine microbial ecology.
BMC Genomics 7.

15. Zhang T, Breitbart M, Lee W, Run J-(}, Wei C, et al. (2006) RNA viral
community in human feces: Prevalence of plant pathogenic viruses. PLoS
Biol 4: ed. DOI: 101371 fjournal.pbio.0040003.

. Tyson GW, Chapman ], Hugenholtz P, Allen EE, Ram R], et al. (2004)
Community structure and metabolism through reconstruction of microbial
genomes from the environment. Nature 428: 37-43.

17. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, et al. (2004)

1

1

=

PLoS Biology | www.plosbiology.org

Marine Viromes

17767 (BBC), 17769 (Arctic), and 17771 (SAR); the Genome Catalogue
(httpiiigensc.sf.net) accession numbers are 000002_GCAT (GOM),
000003_GCAT (BBC), 000004__GCAT (Arctic), and 000005__GCAT
(SAR); and the GOLD database (hutp:/fwww.genomesonline.org)
GOLDstamps are GMO00GD (GOM), GMO0061 (BBC), GM0O0062
(Arctic), and GM00063 (SAR).

Acknowledgments

The GOM, BBC, and Arctic samples were collected with the generous
help of the crew and scientists aboard the research vessels Longhorn,
Mirai, Raddisson, Walten Smith, and Vector. We are grateful ro A.M.
Comeau, . Ortmann, C.M. Short, 5.M. Short, M.G. Weinbauer, and
S.W. Wilhelm for sample collection and processing; as well as K.
Shimada, E.C. Carmack, and ]. Paul for providing the opportunity to
participate in the Mirai and Walton Smith expeditions. The Sargasso
Sea samples were collected with the assistance of R. Morris and the
Captain and Crew or the R.V. Weatherbird I1.

Author contributions. FR conceived and designed the experiments.
CC, AC, MH, and RP performed the experiments. FA, BF, MB, PS, RE,
SK, HL, JMM, JEM, JN, SR, CS, and FR analyzed the data. RO
contributed reagents/materialsfanalysis tools. FA, BF, MB, RE, JEM,
CS, and FR wrote the paper.

Funding. These collections were supported by NSERC grants to
CAS (Discovery, Shiptime and Research Network [CASES]) and by
ONR and NSF grants to CAS. Ship time and collection was supported
by an NSF microbial observatory grant to CAC. The Marine Microbial
Initiative by the Gordon and Betty Moore Foundation (FR) sponsored
the sequencing, bioinformatics, and mathematical analyses.

Competing interests. The authors have declared that no competing
interests exist.

Environmental genome shotgun sequencing of the Sargasso Sea. Science
304: 66-74.

18. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, et al. (2005)
Comparative metagenomics of microbial communities. Science 308: 554-557.

19. DeLong EF, Preston CM, Mincer T, Rich V, Hallam §], et al. {2006)
Community genomics among stratified microbial assemblages in the
ocean’s interior. Science 311: 496-503.

20. Sambrook J. Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory
manual. New York: Cold Spring Harbor Laboratory Press. 1659 p.

21. Margulies M, Fgholm M, Altman WE, Attiya 5, Bader JS, et al. (2005)
Genome sequencing in microfabricated high-density picolitre reactors.
Nature 437: 376-480.

22, Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local
alignment search tool. ] Mol Biol 215: 403-410.

23. Rohwer F, Edwards R (2002) The phage proteomic tree: A genome based
taxonomy for phage. | Bacteriol 184: 4529-4535.

24. Martin AP (2002) Phylogenetic approaches for describing and compa
the diversity of microbial communities. Appl Environ Microbiol 68: 3673-
3682,

25. Swofford DL (2000) PAUP*. Phylogenetic analysis using parsimony (*and
other methods). 4.0 ed. Sunderland (Massachusetts): Sinauer Associates.

26. Jensen JL. Bohonak AJ, Kelley ST (2005) Isolation by distance, web service.
BMC Genetics 6: 13.

27. Schneider S, Kueffer JM, Roessli D, Excoffier L (1997) Arlequin: A software
for population genetic dara analysis. 1.1 ed. Geneva: Genetics and Biometry
Lab, Department of Anthropology.

28. Sutton GG, White O, Adams MD, Kerlavage AR (1995) TIGR assembler: A
new tool for assembling large shotgun sequencing projects. Genome Sci
Technol 1: 9-19.

29. Angly F, Rodriguez-Brito B, Bangor D, McNairnie P, Breitbart M, et al.
(2005) PHACCS, an online tool for estimating the structure and diversity of
uncultured viral communities using metagenomic information. BMC
Bioinformaties 6: 41.

30. Begon M, Harper JL, Townsend CR (1990) Ecology: Individuals, popula-

tions, and communities. Boston: Blackwell Scientific Publications. 945 p.

Ricklefs RE (1990) Ecology. New York: WH Freeman. 896 p.

auth JE, Bernardo J, Camara M, Resetarits W], Buskirk JV, et al. (1996)
Simplifying the jargon of community ecology: A conceptual approach. Am
Nat 147: 5.

33, Edwards R, Rohwer F (2005) Viral metagenomics. Nature Rev Microbiol 3:
504-510.

34. Sullivan MB, Coleman ML, Weigele P, Rohwer I, Chisholm SW (2005) Three
Prochlorococcus cyanophage genomes: Signature features and ecological
interpretations. PLoS Biol 3: el44. DOIL 10.1371journal pbio 0030144,

35. Seguritan V, Feng IW, Rohwer F, Swift M, Segall AM (2003) Genome
sequences of two closely related Vibrio parahaemolyticus phages, VP16T
and VP16C, that coexist in the same host. ] Bacteriol 185: 6434-6447.

November 2006 | Volume 4 | Issue 11 | e368

105



36.

a7

38.

30,

40.

41.

43,

44,

Rohwer F, Segall AM, Steward G, Seguritan V, Breithart M, et al. (2000) The
complete genomic sequence of the marine phage Roseophage SIO1 shares
homology with non-marine phages. Limnol Oceanogr 42: 408-418.
Zeidner G, Bielawski JP, Shmoish M, Scanlan DJ, Sabehi G, et al. (2005)
Potential photosynthesis gene recombination between Prochlorococeus and
Synechocaceus vi al intermediates. Environmental Microbiology 7: 1505-
1513,

Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, et al. (2006)
Prevalence and evolution of core photosystem II genes in marine
cyvanobacterial viruses and their hosts. PLoS Biol 4 e234. DOIL 10.
1371 journal. pbio. 0040234,

Nagasaki K, Tomaru Y, Takao Y, Nishida K, Shirai Y, et al. (2005) Previously
unknown virus infects marine diatom. Appl Environ Microbiol 71: 3528-
3535,

Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, et al
(2006) Microbial biogeography: Putting microorganisms on the map. Nat
Rev Microbiol 4: 102-112.

Dolan JR (2005) An introduction to the biogeography of aquatic microbes.
Aquat Microb Ecol 41: 30-48.

. Breitbart M, Rohwer F (2004) Global distribution of nearly identical phage-

encoded DNA sequences. FEMS Microbiol Lett 236: 245-252.

Short CM, Suttle CA (2005) Nearly identical bacteriophage structural gene
sequences are widely distributed in marine and freshwater environments.
Appl Environ Microbiol 71: 480-486.

Hillebrand H (2004) Strength, slope and variability of marine latitudinal
gradients. Marine Ecol Prog Ser 273: 251-267.

. Hutchinson GE (1961) The paradox of the plankton. Am Nat 95: 137-145.
46.

Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, et al. (2006)
Genomic islands and the ecology and evolution of Prachlorococeus. Science
311: 1768-1770.

PLoS Biology | www.plosbiology.org

2131

47,

48.

=

50.

51.

52,

54,

55,

56.

106

. Yokouchi H, Fukuoka Y, Mukoyama D, Calugay R, Takey;

Marine Viromes

Culley Al Lang AS, Suttle CA (2003) High diversity of unknown picorna-
like viruses in the sea. Nature 424: 1054-1057.

Culley AL Lang AS, Suttle CA (2006) Metagenomic analysis of coastal RNA
virus communities. Science 312: 1795-1798.

. Nomizu T, Mizuike A (1986) Electron microscopy of submicron particles in

natural waters: Specimen preparation by centrifugation. Mikrochim Acta 1:
G5-72.

Moebus K (1991) Preliminary observations on the concentration of marine
bacteriophages in the water around Helgoland. Helgo Meeresunters 45:
411-422,

Steward GF, Montiel JL, Azam F (2000) Genome size distributions indicate
ability and similarities among marine viral assemblages from diverse
environments. Limnol Oceanogr 45: 1607-1706.

Hutchison MICA, Smith HO, Pfannkoch C, Venter JC (2005) Cell-free
cloning using phi29 DNA polymerase. Proc Natl Acad Sci US A 102: 17332-
17336.

vall

na H, et al. (2006)
Whole-metagenome amplification of a microbial community associated
with scleractinian coral by multiple displacement amplification using phi-
29 polymerase. Environ Microbiol 8: 1155-11635.

Pinard R, de Winter A, Sarkis GJ, Gerstein MB, Tartaro KR, et al. (2006)
Assessment of whole genome amplification-induced bias through high-
throughput, massively parallel whole genome sequencing. BMC Genomics:
T 216,

Hendrix RW, Lawrence ]G, Hatfull GF, Casjens S (2000) The origins and
ongoing evolution of viruses. Trends Microbiol 8: 499-500.

de Wit R, Bouvier T (2006) rything is everywhere, but, the environment
selects”; what did Baas Becking and Beijerinck really say? Environ Microb 8:
7H5-T58.

November 2006 | Volume 4 | Issue 11 | e368



Supplementary Material for “Marine Viromes of Four Oceanic Regions”
by Angly et al.
Sample collection and preparation
Field collection from the Sargasso Sea (SAR): Samples were collected on June
30, 2005 from Hydrostation S (32° 10" N, 64° 30' W) located in the northwestern
Sargasso Sea approximately 26 km southeast of the island of Bermuda, essentially the
same spot the Surge Samples were collected. Water from 80 m was retrieved via the R.V.
Weatherbird 11's CTD rosette equipped with 12 liter Niskin bottles. This depth was
targeted because summer subsurface maximum in viral like particles (VLP) is historically
located between 80 and 100 m. Upon recovery of CTD, seawater was transferred to a pre-
cleaned 150 L polypropylene carboy via acid washed silicone tubing. Viruses were
concentrated using a Pelicon II tangential flow filtration system (Millipore Corporation;
Bedford, MA) equipped with a 30 kd Biomax cassette filter (0.5 m?; modified
polyethersulfone). Prior to collection the filter was cleaned with 0.1 N H;P0, recirculated
for 45 minutes followed by 0.IN NaOH recirculated for 45 minutes. One-hundred and
fifty liters of seawater was recirculated over the 30 kD filter until the retentate volume
was ~150 ml. This concentration step took ~3 hours to complete. The final concentrate
was distributed into four 45 ml aliquots in sterile Falcon tubes. Five ml of chloroform
was added to each tube, stored and shipped at 4° C until arrival at SDSU. The final viral
concentration was approximately 1.4 X 10 VLP ml™",
Field collection from the Gulf of Mexico (GOM), the Bay of British Colombia

(BBC), and the Arctic: Samples were collected from the Gulf of Mexico, the Arctic
Ocean, the Strait of Georgia, British Columbia and adjacent inlets, and Barclay Sound on
the west coast of Vancouver Island. Further details on the samples and locations are listed
in Supplemental Table S1. Seawater samples (10 to 200 liters) were prefiltered through
142 mm-diameter glass fiber filters (1.2 um nominal pore-size: type GC50, Advantec
MEFS, Dublin, CA, or 0.7 pm nominal pore-size: type GF/F, Whatman, Clifton, NJ)
followed by either 0.45-pm-pore-size (type GVWP, Millipore, Bedford, MA) or 0.2 pm-
pore-size (Gelman, East Hills, NY) membrane filters. Virus-sized particles in the filtrate
were concentrated ca. 50- to 700-fold by ultrafiltration using a 10 or 30 kDa-cutoft
Amicon/Millipore (S1Y10/S1Y30/510Y 30) spiral cartridge and then stored at 4°C in the
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dark. One milliliter of each virus concentrate (VC) was combined into one of the

following mixes based on its geographical origin. The Gulf of Mexico mix consisted of

41 different virus communities (3.65 x 10' vlps per ml), the Arctic mix consisted of 56

different virus communities (1.11 x 10" vips per ml), while the British Columbia mix

consisted of 83 different communities (3.4 x 10" vlps per ml). Virus abundances in each

mixture were counted using SYBR Green I (Invitrogen, Carlsbad, CA) and

epifluorescence microscopy.

Table S1. Temporal and spatial sampling of 4 marine provinces.

Location Number Number Sampling | Salinity | Temp | Depth
of Stations | of Dates (psu) (°O) (m)
Samples
SAR
Hydrostation S |1 |1 | 6/05 (367 [ 198 |80
GOM
Western GOM 2 6 6/95 and | 36.2to | 20.2to | surface
7/96 36.4 30.5 to 164
Texas Coast 5 13 6/94 to 26.1to | 14.7to | surface
7/96 40.6 30.5 to 5
Northeast GOM 6 14 7/01 31.5t0 [18.7to | 1to
36.6 30.0 120
Eastern GOM 2 8 7/01 33.5t0 [216to | 3to90
36.6 30.0
Arctic
Chukchi Sea 7 14 9/02 26.8t0 |[-14to | 10to
35.0 54 3246
Canadian Arctic [Beaufort 23 42 9/02 to 203t0 [-1.5t0 |[2to
Sea, MacKenzie Shelf, 10/02 34.9 1.5 068
Amundsen Gulf]
BBC
Strait of Georgia and 38 85 8/96 to 140to |7.0to | surface
adjacent inlets, Barclay 7104 31.3 22.6 to 245
Sound

Preparation of Marine Phage DNA samples for pyrosequencing at SDSU: Viral

concentrates were filtered with 0.22 um Sterivex cartridge filters to remove any microbial

contaminants. Viral particles were treated with DNase, RNase, and purified by cesium

chloride (CsCl) gradient centrifugation. Approximately 8.5 ml of viral concentrate, with

CsCl added to create a density of 1.15 g ml™”, was layered onto a step gradient comprised
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of CsCl solutions at 1.7 g mI™", 1.5 g ml™”, and 1.25 g mI"". CsCl solutions were made up
in filtered and autoclaved seawater, obtained separately from the samples. The gradients
were centrifuged at 22,000 rpm in an SW41 swinging bucket rotor at 4° C for 2 hours.
After centrifugation, the 1.5 ml corresponding to the 1.5 g ml™ gradient step plus the
interfaces above and below, were withdrawn from the tubes with a syringe and a 18
gauge hypodermic needle.

DNA was extracted by addition of buffers to yield final concentrations of 0.2 M
Tris, pH 8, and SmM EDTA, followed by addition of 1 volume of deionized formamide.
These samples were then incubated at room temperature for 30 min, after which 2
volumes of 100% ethanol were added to precipitate the DNA. The DNA was pelleted by
centrifugation at 12,000 rpm in a fixed-angle rotor at 4° C for 20 min. The pellets were
washed with 70% ethanol, and then resuspended in 567ul TE buffer (10 mM Tris, pH
8.0, ImM EDTA) and then 30 pl of 10% SDS (sodium dodecyl sulfate) and 3 pl of
proteinase K (20 mg ml") were added, and the samples were incubated at 37° C for 1
hour. Subsequently 100 pl of 5 M NaCl and 80 pl of CTAB NaCl solution (0.7 M NacCl,
10% w/v cetyl trimethyl ammonium bromide) were added, followed by incubation for 10
min. at 65° C. The samples were then extracted with 1 volume of chloroform, then with 1
volume of phenol:chloroform:isoamyl alcohol (1:1:24), and finally with 1 volume of
chloroform, after which 0.7 volumes of isopropyl alcohol (2-propanol) were added to
precipitate the DNA. After storage overnight at -20° C, sample tubes were centrifuged at
12,000 rpm in a microcentrifuge at 4° C. The pellets were washed with 70% ethanol,
dried and resuspended in 50 pl H,O.

The DNA was amplified with Genomiphi kits (Amersham; @-29 DNA
polymerase) for 18 hours in a thermal cycler, using multiple 20 pl reactions containing
50-100 ng of the isolated DNA as template. After amplification, the resulting DNA was
purified with silica columns (Qiagen) to remove the enzyme, dNTPs, and primers, then
ethanol precipitated and resuspended in H,O to yield a DNA concentration of ~0.3 mg
ml"'. DNA samples (~10 pg each) were sequenced using pyrophospate sequencing

technology (454 Life Sciences, Inc, Branford, CT).
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454 pyrosequencing

Potential errors associated with 454 pyrosequencing: There are two main
concerns associated with pyrosequencing: 1) random errors, where an incorrect base is
substituted for a correct base, and 2) systematic errors, due to homopolymeric runs (i.e.,
runs of the same base). Since none of the marine virome sequences were known, the
random error rate can not be directly determined from the data. It is assumed that the
error rate is approximately the same as other investigators are reporting from very deep
coverage of known sequences (e.g. primers included in the sequence). In these cases the
error rate seems to be much less than 1 incorrect base in 1,000 reads (Edwards, personal
communication).

454 Life Sciences, Inc, assert that their sequencing technology is accurate up to at
least 8 homopolymeric nucleotides. To test this assertion, and to estimate the effect of
these errors on the sequence analysis performed here, the frequency of homopolymeric
runs from 3 nt to 15 nt were calculated for each of the four marine viromes, a database of
510 complete phage genomes, and 20 complete microbial genomes (Figure S1).

In general the marine virome contained very similar numbers of homopolymeric
tracts as the microbial genomes. For unknown reasons there appear to be less 9-mers
through 13-mers in the completed phage genomes than in either the microbial genomes or
the viral libraries sequenced here. No 14 nt homopolymeric tracts were found in any of
the 510 complete phage genomes. Presumably the higher packing density of genes in
phage genomes, and the decreased information contained in long homopolymeric tracts is
selected against in these genomes. In contrast to the rumored problems with
homopolymeric tracts, this analysis seems to demonstrate that there are about as many
tracts in 454 pyrosequenced databases as in complete bacterial genomes, and in fact the
Sargasso sample sequenced here appears to contain a few more of these tracts than other
databases.

In total, 15,543 sequences containing homopolymeric tracts between 9 and 15 nt
were found in the four libraries (Table S2). Therefore, less than 1% of the sequences
contain a homopolymeric tract that would be susceptible to the compression error of
concern with pyrosequencing. We therefore conclude that the errors associated with

compression of consecutive nucleotides is negligible in comparison to the number of
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sequences we have generated, and other researchers are demonstrating that the random

error of pyrosequencing is significantly less than any other sequencing technology.

Figure S1. Frequency of homopolymeric tracts in the four marine viromes, the
complete phage genomes, and twenty, randomly chosen microbial genomes. The
tracts from 3 nt to 15 nt were counted and normalized to the number of bases in each
sequence. One 3 nt tract is found approximately every 30 bp, while one 15 nt tract is
found approximately every 10 million bp. The 510 complete phage genomes totaled
18,909,173 bp in length, and the microbial genomes totaled 22,110,123 bp in length. The

lengths of the pyrosequenced libraries are given in the text.
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Table S2. Number of homopolymeric tracts, and number of sequences containing

them for each of the four marine virome libraries.

Library Number of tracts Sequences with >1 tract
GOM 1,659 1,650

BBC 4,053 3,832

Arctic 1,499 1,498

SAR 8,590 8,563

Total 15,801 15,543

Distribution of the marine viral sequences on the Phage Proteomic Tree

A new version of the Phage Proteomic Tree containing 510 phage genomes was
constructed as described previously. All sequences were analyzed by TBLASTX against
a database containing all of the completely sequenced phage genomes. Similarities with
an E-value < 10 against this database (approximately equivalent to an E-value of 0.001
against the SEED nr database) were considered significant. For each sequence with a
significant similarity to the phage genome database, the top TBLASTX similarity was
recorded. To determine which phage phylogenetic groups were seen in each of the marine
samples, each genome with at least one top significant similarity in a particular sample
was marked with a solid line in the corresponding column next to its position on the
Phage Proteomic Tree. A version with the relative abundance of the phages was also
constructed (Figure S2). In that case, the length of the bars is proportional to the relative

abundance of the phage species in the community.
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Figure S2. Relative abundance of phages in the 4 metagenomes.
Note that due to the way the samples were stored and the long storage time, the

distribution shown may not accurately reflect the reality.
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Analyses of the chpl-like Microphage

Please note: The SAR chpl-like Microphage is a consensus sequence constructed
from the SAR metagenome. The input sequences actually represent a group of closely
related viruses.

>SAR chpl-like Microphage

CCCAGCGTGCTGGGTTTAATCTCATGTCGTAGTGTAGTAAAGGTATCGTACCTTCCAAGCCACCGTTAGGAATAACATT
CTGTTCCATCATACCAAGGTATTCTGGACGTTGTAAACGTGCGTCTGGTGAGGTCACTCCGAAATGTGATTGTAATATTT
CGGTGTATCTTGTACCGCCTCGCGCGTCTTTCTCATAAAGACGTTGAATTTGAAACGCTTCGCGGAGTTCGTTAATTGTT
GCAGCTGCTGCATCTGTAAGATCTGCTGTAAAGTTGAAATCTTGCGCTGTTGCAAGGTTAGCTGCGCCTCCACCTGGGA
AAGTATTGGCGTAATAAAAAATCTTGGTTGTTAGATGCATCGTTATACATTGCGATGTATTTTCCATCGCCGGTAATTGA
TGACCCGCCAACTGCTGAGTAGGTAATTGGTGCTTCCGTTCCCAGTGGTAGTGTTACTGCATCGCCCTTTTGAGGGAAT
GGTAAACTGCTGGTAAAATAATCGTGGCGTTTACCACGCTTTTGTAGTGTGTAAGTTGTGTAAGTGTCCGGGCCATCGC
CTTTGTCTACTGTTAAGCTATCTTGTAGGTTTTTCGTCACGAAACCACTCATTCCATATAAGGTTATAAGCTCGTCCGTG
TAAGTTATTAAAATCTATACCAGC AATTTGCGTGGGAAGTCCCATGTAATCAAAAAGGCTATTTTCTGCCACCGTAGCT
CCGGTAATTTGAGGTACTAGAAAGTCTGTGCTATCGCCTGGATCGTCTTGTGCCCCGTTAAACTTTTCCCAATTGTCCCA
GATCAATCTATTGGGGACAAAGAAAAAGGAATGTCTCAACATACATATTATCCATAATTGGATATATCGGCGTTGCTAA
TCGACCAAAACCCTGTTGCGTTCATTTGAAAAGTATCGCCTGGTAGAACTTCGTCTAC ATAGATAGGGACCAGGTACCC
TGAATCGAATGTTGTCTTAAGGCCGTGCACACGGTTAAAGGTACTACGTTGAATATCCGCTTGTGGTACTCTGCTAAAT
TCGTGTGTAAGTGTAGTGGGTAGGCTACCCATTGGTCCGCCGAGCATATTAGTCTCCTAATGTTTCCATCTCKATAATTT
TCTTTGGTTTTTCCTGACCGGTAATTATTCCGGTCGTTTCGTC AAAGCTACCCAATCTGTGAAGCGAAAAATCGCTAGGG
TGCTTTGCGAATGCGTGATCCTTATTGTTGATCACTATGTCTTGAACCGCTCTTACTGCGGTTCCATCTTTAATCTCTAGA
AAGGGTTGTGAGTACATCTCAGCCTTTCTGTCATATACTGCGTAATAAACTTTCTTCATY TTTTCCTCCCGTGGAATATT
GTTACGGGAGAATCTTACGCATAATATACAATAGACGTCAATAGTTTATGTAACTGTTTGTTTGGACTCTTGTTACCCTG
TAAATGATTCATTTTATGACATTTTACAGGTTTCGAACTAATCGTTCGAGTTTTTTTATTTTTATTTCTTCTGACACCCAG
AGGTCATCCATCGCCTTTATTATATTCAATTATAGTCTCTGGCGCCTGTTCTTTTCGCTTCTCTTTCAGCTGCTCAAAGTA
TTCGGGATCGTGTTTCTGTAGTTCCTTATCGTAATACCTAGGAACTTTCATTTTTATACCATCGTGAACGATGTAATCGT
GCAAATGTGCATCTGTCCATCCGTATTTCCAATACCATTGATTTCCGATCCCGTTTTGAGGTTTTTKGTTTATTTCCACGC
GACATTGTCGCGTATTGGTTATCGAGATCGTATTCGATCTGACCTGTTTCGGGGTTTATATATTGCTCAGGGGGGCCCTC
CCCTTTCGOTCTTTTCATTACATACCGTGOCACATAATGGGCACTTTCGTATGTACACGCCCCAATTCTGTGGTAGCCGT
GGGGCCACAGTTCTTCTAATTCGGGTGATATATATAATTCGTTACCTAGTTTTTTTTCCCATAATTGTTTGTCTGGAAAAT
CATACCCGAATATTATTGCATGATAGTGGGGGCGTTTGTTTTCATCACCATATTCTCCGCAGTGAAAGAACTTAATGTCT
TTTCCTTTTTTTTTGCGGAGCCGTITCAAAAATCTCTGAAACTCGGTGATGTCCAGAGACCAAGGGCGAGGGCGCTGTTC
AAGGGTCTCTGGGTTTATTGTTAAGGTTATGAAGCAATTGTGTTCGTGCATCTGGGCTTCATGC ATACATCTGATAGCCC
ATTCACGACTGTGTTGCAGTCGCAACCCCAGCATTGACCACATGGAAGAATTAAAAGCCCTTTGCATATGCAAAGGGCT
TTAATCTTCCCTGTGGTCAGTGCTGGGGTTGCAGACTGCAACACAGTAGAGAATGGGCTATCAGATGTATGCATGAAGC
CCAGATGCACGAACACAATTGCTTCATAACCTTAACAATAAACCCAGAGACCCTTGAACAGC GCCCTCGCCCTTGGTCT
CTGGACATCACCGAGTTTCAGAGATTTTTTGAAACGGCTCCGCAAAAAAAACAGAAAAGGACATTAAGTTCTTTCATTG
CGGAGAATATGGTGATGAAAACAAACGCCCCCACTATCATGC AATAATATTCGGGTATGATTTCCAGACAAACAATTA
TGGGAAAAAAAAACTAGGTAACGAATTATATATATCCCCCGAATTAGAAGAACTGTGGCCCCATGGUTACCACAGAAT
TGGGGCGTGTACATACGAAAGTGCCCATTATGTGGC ACGATATGTTATGAAAAGAGCGAAAGGGGAGGGGCCCCCCTG
AGCAATATATAAACCCCGAAACAGGTCAGATCGAATACGATCTCGATAACCAATACGCGACAATGTCGCGTGGAAATA
AACAAAAAACCTCAAAACGGGATCGGAAATCAATGGTATTGGAAATACGGATGGACAGATGCACATTTGCACGATTAC
ATCGTTCACGATGGTATAAAAATGAAAGTTCCTAGGTATTACGATAAGGAACTGGAAAAATACGATCCTGAATACTTTC
AGGAATTGAAAGCGAAGCGGAAAGAAC AGTCACCAGAGACTATAATAGAATATAATAAGGCGATGGATGACCTCTGG
GTGTCAGAAGAAATAAAAATAAAAAAACTCGAACGATTAGTTCGAAACTTGTAAAATGTCATAAAATGAATCATTTAC
AGGGTAACAAGAGTCCAAACAAACAGTTACATAAACTATTGACGTCTATTGTATATTATGCGTAAGATTCTCCCGTAAC
AATATTCCACGGGAGGAAAAGATGAAGAAAGTATATTACGCAGTGTATGACAGAAAAGCAGAGATGTATTCACAGCCT
TTTCTAGAGATAAAAGACGGTACAGCAATAAGGGCTGTTCAGGACATAGTAATCAACAGTAAAGACCATGCGTTCGCA
AAACATCCCAGAGATTTCACATTATTCAGACTGGGTGAATTTGACGAAACGACAGGCGTAATAACCGGACAGGATAAA
CCGAAACAGATCATAGAGATTGAAACACTTGGAGAGTTAAAAAATGCTAGGCGGACCAATGGGCACCCTGCCCACCAC
ATTATCACACGAATTCTCACGCGTACCTCAAGCAGATATTCAACGTAGTACCTTTAACCGTGTACACGGGUTTAAAACA
ACATTCGATAGTGGATACTTGGTTCCGATATTCGTCGACGAAGTTCTCCCCGGCGATACGTTTCAATGTAGCGCGACGG
GCCTTTGGTCGCCTTTCAACTCCTCTCTACCCAGTAATGGATAACATGTATGTAGAAACATTCTTTTTCTACGTCCCAAA
TCGTATTATCTGGGACAACTGGGAGAAACTC AACGGTGCACAGGATGATCCGAACGACAGTACAGATTTTCTGGTTCCC
CAAATACAATCGGCAACAATAGCTCAGGATACTCTTTTCGATTATATGGGACTTCCCACCAAGACAGCAGGTTTGAACT
TTAACAACCTGCACGGTAGAGCATACAACCTCATCTGGAACGAATGGTTCCGAGATGAAAATTTACAGGATTCCCTAGT
AGTAGATAAGGACGATGGCCCTGACACTTTAACAGATTATACACTACAAAAAACGTGGTAAAAGACACGATTATTTTA
CCTCTGCCCTACCATGGCCTCAGAAAGGCGATGCAGTAAACCTACCACTCGGAACATCTGCTCCAGTAGC AACGGATTC
CGCAGATGGTGAAAACATAGCAGTATATTCAACAGGATTAGGCGGCTATACCAATATGGCGGCGAATGGAACCTTTGT
GGAAAACCCGTTCGGCGGTGGAACCGAAGACCGCTCACTATATGCCGACCTAACAGATGCAACAGCAGCAACAATCAA
CGAATACGCGAAGCGTTTCAAATCCAGAGACTTCTGGAGCGTGACGCTAGGGGCGGCACAAGATATACCGAGATTTTA
CAATCCCATTTTGGAGTAACCTCACCAGACGCCGCTTACAGC GTCCGAGTATCTCGGCGGCTCAAAAACAGAAATAAA
CATGCAGCCAATTCCACAGACTGGTTCAACAGACAGTACATCTCCTCAAGGTAACCTAGCAGCAATAGGTACAGCATC
ATCCAGAGGCGGATTTTAATAAGTCTTTTGTAGAAC ATGGTGTAATTATCGGAATGGCATGCGTATTTGCAGACTTAAC
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TTATCAACAAGGGTATGAACCGTATGTGGTCACGTCGTGACCGCTGGGACTTTTATTGGCCAGCTCTCGCCCATTTAGG
CGAACAAGCGGTTCTAAACCAAGAAATCTATTATCAAAACACTTCAGCGGATTCCCAGACCTTTGGCTATCAGGAACGC
TGGGCAGAATATAGATATAAACCAAGCCAGATCACTGGCAAAATGCGTTCGAACGCAACAGGCACCTTTAGACGTATG
GCACTTGGCACAGGATTTCTCCTCGCCTGCCGGCACTCAACTCTTCATTCATCGAAGAAAACCCACCCATCGATCGGGT
TATCGCAGTAACCGACGAACCACAATTCATCTGGGACTGGTACTTCGATCTTAAATGTACAAGACCAATGCCTGTTTAT
TCAGTACCAGGCTTAATCGATCACTTCTAGGTGCAATATGAATGGATTCAAGTGGACCATTATTCTTGGCGTTCTTCGCA
AGTATGC

>chlamyd4 (Chlamydia phage 4; AY769964.1)
ATGGTTAGGAATCGGCGTTTGCCTTCAGTTATGAGTCATTCTTTCGCGCAAGTCCCATCAGCGCGAATTCAGAGAAGTT
CTTTTGATAGATCTTGTGGTTTAAAAACTACATTCGACGCCGGTTACCTAATCCCTATCTTTTGTGATGAAGTTCTCCCT
GGAGATACTTTCTCCTTGAAAGAGGCGTTTTTAGCACGTATGGC AACGCCTATCTTTCCTCTTATGGATAATTTGCGTTT
AGATACGCAGTATTTCTTTGTTCCTCTTCGACTATTATGGTCGAATTTTC AAAAGTTCTGTGGAGAAC AAGATGATCCTG
GAGATTCTACAGATTTTCTTACCCCAATTTTGACCGCTCCTCAGAATGGTGGTTTTGCTGAAGGATCGATCCATGATTAT
CTTGGTCTACCTACTAAAGTTGCAGGAGTTCAATGTGTTGCGTTTTGGC ACAGAGCTTACAATTTGATTTGGAACCAGTA
CTATCGTGATGAAAATATTCAGGATTCAGTTGAAGTGCAAATGGGAGATACCACTGCAGATGAAGTGAACAATTATAA
GCTTCTTAAGCGCGGGAAGCGTTATGATTATTTCACTTCATGTC TCCCTTGGCCACAAAAAGGTCCTGCAGTGACAATC
GGAGTTGGAGGTATTGTTCCTGTTCAAGGTTTAGGAATTCAATGGGGCGGTTCTACAGGTCCAAATCCTATAACTGCTT
CTGATTGGAGAGATTCCGTTAATCCTACATATGTAAATTCTGCAACGCAGACGCCTACAGGAACGAATAAGATTTTGAG
TTATGGTCAGGCGTATTATATTAAGAAGCCTGGAGAACCAGCTACAGATCCTGCACCTAGGGC TTATGTAGATTTAGGT
TCGACTTCTCCTGTGACGATTAATTCTCTTCGTGAAGCTTTCCAATIGCAAAAGCTTTATGAGAGAGATGCCCGTGGTGG
AACAAGGTACATTGAGATTATTCGTTCCCATTTCAATGTGCAGTCTCCAGATGCAAGGTTGCAACGTGCAGAGTATCTT
GGAGGTTCTTCAACTCCTGTGAATATTTCTCCGATTCCACAGACTTCCTCAACAGACTCCACATCTCCTCAAGGAAATCT
TGCTGCTTATGGTACAGCGATTGGATCGAAGCGAGTCTTCAC AAAGTCCTTCACAGAACATGGTGTAATCCTTGGATTA
GCCTCTGTACGCGCCGATCTCAACTATCAGCAAGGTTTGGATAGGATGTGGTCACGAAGAACGCGCTGGGACTTTTACT
GGCCTGCTCTTAGCCATTTAGGTGAGCAAGCTGTGCTCAATAAAGAGATCTATTGCCAAGGTCCTGCAGTTAAGGATGC
TCAGAATGGCAATGTTGTTGTGGATGAGCAAGTCTTTGGATATCAGGAGAGATTTGCGGAGTATCGCTATAAGACTTCG
AAAATTACTGGCAAGTTCCGATCAAATGCTACAAGTTCTTTAGATTCATGGCATTTAGCTCAGGAATTTGAGAATCTTC
CAACACTTTCTCCGGAGTTTATCGAAGAAAATCCTCCTATGGATCGTGTTCTTGCTGTAAATACTGAGCCAGATTTTCTT
TTAGATGGCTGGTTTTCATTGCGTTGTGC AAGACCAATGCCTGTCTACTCTGTTCCAGGCCTCATTGATCATTTCTAATTT
CTACTCAGTTTTCCGATTTGATAAAGCAAACTCACGTTCGTAGATAAGTGAGTACGGTGAAGACCAAAACGGAAAGCT
GAGGCGTAAAAATGTGGAGAATTTATGAATCCCGAACAACTTACGAACACTCTCGGTTCAGCAGTTTCTGGAGTTGCGC
AAGGATTATCCTTTCTCCCTGGAATAGCTTCCGGAGTTTTAGGATATCTTGGTGCAC AAAAGC AAAATGCCACTGCGAA
GCAAATTGCTAGAGAGCAAATGGCTTTTCAGGAGCGCATGTCTAACACGGCATACCAACGTGCCATGGAAGACATGAA
GAAAGCTGGCCTTAACCCTATGTTAGCTTTTTCTAAAGGCGGTGCTTCTTCTCCTGCAGGAGCGTCATGGTCTCCGAATA
ATCCTGTAGAAAATGCGATGAATTCTGGCCTTGCCGTGCAAAGACTTACTTACGAACGTAAGAAAATGCAGGCAGAGC
TTCAGAATCTTCGTGAGCAGAACCGTTTGATTAGAAATCAAGCAATACGTGAAGGCTATCTCGCAGAACGAGATAAAT
ATATGCGTGTTGCTGGAGTTCCTGTGGCCACTGAGATGTTAGATAAGACTTCTGGTCTTATCTCATCTTCAGCTAAGGCA
TTTAAGAATCTTTTTTCAAGAAAAGGAAGGTAGATGTTTAAGTCGGCATATTCCGAAAAAAA ATCTGTAAAGATGAAGT
TCACACAGAAATCTTTGACGCAGCAACACAACAAAGATGAGTGTGATATTAACAACATCGTCGCAAAACTCAACGCTA
CAGGCGTTTTAGAGCACGTAGAGCGACGATCTCCACGTTATATGGACTGTATGGACCCTATGGAGTATTCCGAGGCTCT
AAACGTCGTTATTGAGGCTCAGGAGCAATTTGACTCTTTACCAGCCAAAATTCGTGAACGTTTTGGAAATGATCCAGAA
GCGATGCTCGATTTCTTGAGCCGTGAAGAAAATTATGAAGAAGCAAAGGCGTTAGGTTTTGTTTATGAAGATGGAACTT
CTGGAGCACCTCAAACATTTTTTGAAGCTGATCCTAAAGATGATCAAAATGTGGCAAACCAAGAACCTGGATTAGCCC
AAAAATGAGCAAATTTTGTGCAAAAAAGTGTGCAAAAAAATGTGCAAAAAATGGGCCAAAAATTGCCCCCAAAATCG
GAGCATTTTACGAGAGAAAAACACCAGCGTGTAACAGTCTTACTTGATCTGTTACACGCCTGGTGGTCGGAATTGTAAG
GAAATTTTTTAAAACTAAGCCCTATTTAGGGCCCAAAATTTAAGCTTAAAATGAGGTTAAAAAATGGCACGAAGATAC
AGACTTTCGCGACGCAGAAGTCGACGACTTTTTTCAAGAACTGCATTAAGAATGCATCGAAGAAATAGACTTCGAAGA
ATTATGCGTGGCGGCATTAGGTTTTAGTTTTGGATGTTAAGGAAATCTTTAAGGTTATGCTAAATTAGCTGCTATGTATA
ATTTGGCTCGTGACGAATGTATGTCATATTCGCACCGTTTACAATTACACAGCAGTTGAAGGCTTAGACGTTGATTTTTA
ATGTCTTAGCCTTCATTTTTGGTTTAGTGTGATTGCAAATGAGGTGCTCATGACGTGCATTTCTCCTTTTGTATGTTTTAT
AGATCCTTGTAACCAGCTCTGGTTTCCCAAAGGTGAGAAGTCTTCTAAACCTTGGGATAAAGTCCGTGAATTAAATGCT
TTTGAGCAAACGCAACCTGAAGAGTATCGAAAACGTTGGATTTTGATGCCTTGCCGTAGGTGCAAGTTTTGTAGAGTGC
AGAATGCAAAGATTTGGTCGTATCGTTGC ATGCACGAAGCGTCTTTATATTCTCAGAATTGCTTTTTAACTTTGACTTAT
GAGGATCAGCATCTTCCAGAGAATGGTTCTCTGGTAAGAAATCATCCGACTTTGTTTCTTAGGCGATTGAGAGAGCACA
TTTCTCCTCATAAGATTCGTTATTTTGGATGTGGTGAATATGGATCGAAATTACAAAGGCCTCATTATCATCTTCTTATTT
ATAATTACGATTTTCCTGATAAAAAGCTCTTGAGTAAAAAGCGTGGCAATCCTCTCTTTGTTTCTGAGAAGTTAATGCA
GCTTTGGCCGTATGGATTCTCTACAGTGGGATCTGTAACGCGGCAAAGTGCAGGTTATGTAGCGCGCTATTCTTTGAAG
AAAGTGAGTAGAGATATTTCTC AAGATCATTATGGTCAAAGACTTCCGGAGTTTCTTATGTGTTCTCTTAAACCAGGAA
TAGGAGCGGATTGGTATGAGAAATATAAACGCGATGTCTATCCTCAGGATTATCTTGTTGTGCAAGATAAAGGGAAGT
CTTTTACGACGCGTCCTCCACGTTACTATGATAGCTACATTCTCGGTTTGATCCGGAAGAGATGGACGAGGTCAAACAA
AAACGTGTAGAGAAAGTCATGGCTTTGCCTGAGCTATCTCAGGATAAGGCTGAGGTGAAGCAATATATTTTCAATGACC
GTACGAAGAGACTCTTTAGAGACTATGAGGAGGAGAGTTACTAAACTTTTTTAAAAAATAGGAGCTTTTTTCAATGAAA
GTTTTTACAGTGTTTGATATTAAGACGGAAATTTATCAGCAGCCTTTTTTTATGCAGGCTACGGGAGCGGCAATCAGAG
CGTTTTCCGATATGGTAAATGAGGATCCTACAAAGAATCAATTTGCCGCGCATCCTGAAGATTACATTCTCTATGAGAT
TGGATCTTACGATGACTCTACTGGAACTTTCATTCCCTTAGATGTGCCTAAAGCCTTAGGAACAGGCTTGGATTTTAAGC
ACAAACAGTAGGGAAGAT
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Global sample diversity and cross-contig simulation

For these analyses, 2500 random sequences were taken from each of the 4

metagenomes, totaling 10,000 sequences. This is the mixed sample. The sequences were

assembled with TIGR_Assembler using a minimum of 98% identity over at least 20 bp

and no sequence alignment error in 32 bp (“-g 1”” argument).

A contig spectrum was determined by counting the number of g-contigs, where g

is the number of fragments in any particular contig (Figure S3).

Figure S3. Determining a contig spectrum.

Metagenome 1 Metagenome 2
v _+_
1-contig{ — = = =
2-contig { — e —_—
3-contig{
. v v
Contig 1141 00..] [16 3000..]
spectrum v v

PHACCS predictions of assemblage structure

For a particular set of sequences, the average fragment length was 102 bp. All of

the contigs of 5 or more sequences (i.e., >4) only contained sequences from one library

and the contig spectrum from the mixed sample was:

Mixed contig spectrum: [9474 13026 13752021000110000000000]
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13 5 GOM, 3 BBC, 4 SAR, 1 cross

26 11 GOM, 1 Arctic, 1 cross

130 36 GOM, 10 BBC, 24 Arctic, 41 SAR, 19 cross

1 9474  singletons: 2297 GOM, 2446 BBC, 449 Arctic, 2324 SAR

o

q = number of fragments in each contig (size of the contig)

# = number of contigs

To determine a cross contig spectrum, only sequences that assembled with
sequences from other regions were kept. The number of g-cross-contigs was then counted
as the number of remaining contigs of ¢ sequences. The total number of singletons (1-
contigs) from each region that assembled with any fragments from other regions was the
number of 1-cross-contigs. The method to determine this cross-contig spectrum is
represented in Figure S4. In the example above, the cross-contig spectrum was: [42 19 1

10]

Figure S4. Getting a cross contig spectrum.
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Dissolved contig spectra were calculated for each separate metagenome by
determining how many of the contigs came from only one metagenome. The dissolved
contig spectra were not used in the manuscript except as a check on the methodology
(i.e., they should be similar to contig spectra obtained when assembling individual

metagenomes).

After repeating the process 10 times to get a better coverage of the metagenomes,
the resulting contig spectra were averaged yielding the following:
Average mixed contig spectrum: [8870.1 227.549.923.411.874433228131.71.2
0.7050904104060403020.1020.10.1020.20.1020203020030.10
0.10302000.10000020.10000000000]
Average cross-contig spectrum: [48.9 23.5 1.4 0.2]

To estimate community structure and diversity, the averaged mixed contig
spectrum was analyzed using PHACCS (http://biome.sdsu.edu/phaccs) using the
following parameters for the example above: 102 bp for the average fragment size, an
average genome length of 50 kb, and looking for up to 100,000 genotypes. The results are
presented in Table S3.

Table S3. Example of PHACCS output using the average mixed contig spectrum
mentioned above. The best fit (lowest error) in this example was for a logarithmic

distribution of the genotypes.

Error Richness | Evenness % most Shannon

abundant (nats)
Power law 4560.1 100,000+ *
Exponential 26,208 10,001 NaN 8.3849 NaN
Logarithmic | 2324 .8 57,572 0.89481 9.3394 9.8078
Lognormal 3906.3 100,000+ *
Niche 26,208 10,001 NaN 8.3849 NaN
premption
Broken 20,095 53 0.89884 8.5979 3.5687
stick
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* 100,000+ means that the best parameters for the tested distribution were not found by

PHACCS using the specified input parameters.

The Monte Carlo simulation was used to determine whether differences between
observed viruses within a community are due to changes in their relative rank (i.e., the
abundance they make in the community) or because they are fundamentally different

viruses (illustrated in Figure S5).

Figure S5. The possible scenarios considered in the Monte Carlo simulation to

explain the observed cross contigs.
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The average cross-contig spectra were then compared with simulated average

cross contig spectra from simulated mixtures of the four communities (Figure S6).
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Appendix 3: GAAS

The GAAS Metagenomic Tool and its Estimations of Viral and Microbial Average

Genome Size in Four Major Biomes.
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Author summary:

Metagenomics uses DNA or RNA sequences isolated directly from the environment to
determine what viruses or microorganisms exist in natural communities and what metabolic activities
they encode. Typically, metagenomic sequences are compared to annotated sequences in public
databases using the BLAST search tool. Our methods, implemented in the Genome relative Abundance
and Average Size (GAAS) software, improve the way BLAST searches are processed to estimate the
taxonomic composition of communities and their average genome length. GAAS provides a more
accurate picture of community composition by correcting for a systematic sampling bias towards larger
genomes, and is useful in situations where organisms with small genomes are abundant, such as disease
outbreaks caused by small RNA viruses.

Microbial average genome length relates to environmental complexity and the distribution of
genome lengths describes community diversity. A study of the average genome length of viruses and
microorganisms in four different biomes using GAAS on 169 metagenomes showed significantly
different average genome sizes between biomes, and large variability within biomes as well. This also
revealed that microbial and viral average genome sizes in the same environment are independent of
each other, which reflects the different ways that microorganisms and viruses respond to stress and

environmental conditions.
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Abstract

Metagenomic studies characterize both the composition and diversity of uncultured viral and
microbial communities. BLAST-based comparisons have typically been used for such analyses;
however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds
to find significant similarities can decrease the accuracy and validity of estimates. Here, we present
Genome relative Abundance and Average Size (GAAS), a complete software package that provides
improved estimates of community composition and average genome length for metagenomes in both
textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via
length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select
significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was
robust both to high percentages of unknown sequences and to variations in metagenomic sequence read
lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for
metagenomic analysis may dramatically underestimate the abundance and importance of organisms
with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of
microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine
whether genome lengths vary consistently between and within biomes, and between microbial and viral
communities from the same environment. Significant differences between biomes and within aquatic
sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome
length is a fundamental property of environments driven by factors at the sub-biome level. The behavior
of paired viral and microbial metagenomes from the same environment indicated that microbial and
viral average genome sizes are independent of each other, but indicative of community responses to

stressors and environmental conditions.
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Introduction

Metagenomic approaches to the study of microbial and viral communities have revealed
previously undiscovered diversity on a tremendous scale [1,2]. Metagenomic sequences are typically
compared to sequences from known genomes using BLAST to estimate the taxonomic and functional
composition of the original environmental community [3]. Many software tools designed to estimate
community composition (e.g. MEGAN) annotate sequences using only the best similarity [4]. However,
the best similarity is often not from the most closely related organism [5]. In addition, most
metagenomes contain a large percentage of sequences from novel organisms which cannot be identified

by BLAST similarities, further complicating analysis [1,6,7].

Mathematical methods based on contig assembly have been developed to estimate viral diversity
and community structure from metagenomic sequences regardless of whether they are similar to known
sequences [8]. These similarity-independent methods require the input of the average genome length of
viruses from a given sample [8]. Having an accurate value of this average is important because it takes
a potentially large range spanning 3 orders of magnitude, and has a large influence on the diversity
estimates. Average genome length for an environmental community can be determined using Pulsed
Field Gel Electrophoresis (PFGE) [9,10]. PFGE gives a spectrum of genome lengths in a microbial or
viral consortium, indicated by electrophoretic bands on an agarose gel, which can be used to calculate
an average genome length. Due to the large variability of dsDNA virus genome length, PFGE can
discriminate and identify dominant viral populations [11]. However, PFGE is limited because the bands

are not independent and a single band can contain different DNA sequences [12,13].

Average genome length in environmental samples has also been used as a metric to describe
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community diversity and complexity [9,14-17]. In PFGE, both a larger size range and a greater number
of bands indicate a wider variety of genomes and hence, a more diverse community [9,14,16,17]. The
average genome length of a microbial community has been shown to serve as a proxy for the
complexity of an ecosystem [15]. Longer average genome lengths indicate higher complexity [15], since

larger bacterial genomes can encode more genes and access more resources [18].

Here we introduce Genome relative Abundance and Average Size (GAAS), the first
bioinformatic software package that simultaneously estimates both genome relative abundance and
average genome length from metagenomic sequences. GAAS is implemented in Perl and is freely

available at http://sourceforge.net/projects/gaas/. Unlike methods that rely on microbial marker genes to

estimate genome length, the GAAS method can be applied to viruses, which lack a universally common
genetic element [19]. GAAS determines community composition and average genome length using a
novel BLAST-based approach that maintains all similarities with significant relative alignment lengths,
assigns them statistical weights, and normalizes by target genome length to calculate accurate relative
abundances. Using GAAS, the community composition and average genome length for over 150 viral
and microbial metagenomes was derived from four different biomes, including the Sargasso Sea virome
previously described in Angly et al. [1]. The average genome lengths were used in a meta-analysis to
determine how genome length varies at three levels: between biomes (e.g. terrestrial versus aquatic),
between related sub-biomes (e.g. ocean versus freshwater), and between microbial and viral

communities sampled from the same environment.
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Results and Discussion
Accuracy of GAAS estimates

GAAS provided more accurate estimates of average genome length and community composition
than standard BLAST searches (i.e. no length normalization, no relative alignment length filtering, top
BLAST similarity only) (Figure 1). The accuracy of GAAS estimates was benchmarked using artificial
viral metagenomes. To simulate environmental metagenomes, 80% of species were treated as unknowns
and viral communities were created with either power law or uniform rank-abundance structures. The
error for power law metagenomes was consistently higher than for the uniform case (data not shown).
Significance of BLAST similarities was determined using relative alignment length and percentage of
similarity in addition to an E-value cutoff. The accuracy of GAAS was dramatically increased by
normalizing for genome length; average errors decreased significantly for community composition
(p<0.001, Mann-Whitney U test), as well as genome length (p<0.001, Mann-Whitney U test) (Figure 1
A, B). Metagenomes consist of sequence fragments derived from the available genomes in an
environment [20]. Even if two genomes are present in equal abundances, a larger genome has a higher
probability of being sampled because it will produce more fragments of a given size per genome
(Figure S1). Length normalization in GAAS corrected for this sampling bias inherent to the
construction of random shotgun libraries such as metagenomes. Using all similarities weighted
proportionally to their E-values further reduced errors in composition. This reduction was significant in
comparison to average error when only the top BLAST similarity was used (p<0.001, Mann-Whitney U
test) (Figure 1 C). When no species were treated as unknown, the error on the GAAS estimates
decreased dramatically (Figure S2). GAAS performed well in benchmarks using artificial microbial

metagenomes obtained from JGI (Figure S3). Figure S4 shows that it is harder to distinguish between
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closely related strains than unrelated species using local similarities: the error on the relative abundance
estimates is higher than for more distantly related microorganisms (Figure S3). However, GAAS
improves both estimates of relative abundance and average genome length, from ~2% relative error for
the average genome size when keeping only the top similarity to ~0.2% using all similarities and

weighting them (Figure S4).

Read length does not matter for GAAS

Variations in metagenomic read lengths did not affect the accuracy of GAAS relative genome
length estimates (Figure 2, Figure S5, Figure §6). GAAS was benchmarked on simulated viral
metagenomes containing 50, 100, 200, 400, or 800 base pair sequences. Read length had no effect on
the accuracy of average genome length estimates (p=0.408, Kruskal-Wallis test). Average errors in
composition increased significantly (p<0.001, Kruskal-Wallis test) with increasing read length, but
there was only a very weak positive correlation between increased errors and longer reads (tau=0.07,
p<0.001). The accuracy of GAAS estimates was thus not very susceptible to changes in read length on
average. This contrasts with a report on the inappropriateness of short reads for characterizing
environmental communities, mainly on the basis that they miss more distant homologies than longer
sequences [21]. In addition, the longest reads tested here (800 bp) achieved both the lowest and highest
error on the relative abundance estimates (Figure S5). This indicates that the choice of appropriate
filtering parameters is more important for longer sequences than for short sequences. In summary,
GAAS can be used to accurately and effectively estimate both composition and average genome length
for sequences from a variety of available technologies: very short (~50 bp) sequences obtained by
reversible chain termination sequencing (e.g. Solexa), mid-size sequences produced by Roche 454

pyrosequencing (~100-400 bp), and long 700+ bp reads sequenced by synthetic chain-terminator
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chemistry (Sanger).

Re-analysis of the Sargasso Sea Virome

Re-analysis of the Sargasso Sea virome using GAAS revealed that small ssDNA phages were
more important than previously assessed, representing ~80% of the viral community (Figure 3).
Community composition and average genome size for the Sargasso Sea virome were calculated using
both the GAAS method and the standard method (no length normalization, top similarities only) for
comparison. Both the pie charts and length spectra in Figure 3 were generated directly by GAAS. Using
the standard method, the Sargasso Sea viral community was dominated by Prochlorococcus phages
(64%), with lesser abundances of Chlamydia phages (15%), Synechococcus phages (12%), Bdellovibrio
phages (3%) and Acanthocystis chlorella viruses (2%). In contrast, using GAAS, Chlamydia phages
were the most abundant organism (79%), whereas Prochlorococcus phages only comprised 16% of the
community. The presence of Chlamydia phages in the Sargasso Sea was previously verified
experimentally using molecular methods [1]. In contrast to the standard method, the GAAS method
also indicated very low relative abundances (<1%) of Synechococcus phages and Chlorella viruses,

which have larger genomes.

Most of the variations in community composition estimates were explained by differences in
viral genome lengths (Figure 3, right panel). The corrected relative abundance estimates provided by
GAAS indicated that species with larger genomes were less abundant than previously thought, and that
normalizing by genome length was essential for accurate estimation of community composition (as
shown in benchmark tests, Figure 1). A lack of normalization could lead to poor and possibly
misleading community composition estimates, as our results have shown, since relative abundance does

not equal percentage of similarities.

128



Phages with small genomes (20-40 kb) are believed to be the most abundant oceanic viruses
[11]. In the re-analysis of the Sargasso Sea metagenome, GAAS estimated that 80% of the viral
particles were Microviridae (mainly Chlamydia phages), viruses with a genome size smaller than 10 kb.
Multiple Displacement Amplification (MDA) was used during the preparation of the Sargasso Sea
virome and could have led to over-representation of this viral family. Despite this potential bias, the
Chlamydia phage content of this virome was still higher than in all viromes prepared with MDA (except
for the stromatolite viromes [6]) (data not shown). In addition, diverse marine circovirus-like genomes,
with a length of less than 3 kb, have also been reported in the Sargasso Sea [22], suggesting that small

single-stranded viruses play important roles in this marine habitat.

Average genome length varies significantly between and within biomes

Both microbial and viral average genome lengths calculated by GAAS were significantly
different between marine, terrestrial, and host-associated biomes (Figure 4A, Table S1, Table S2). Of
the 169 metagenomes analyzed, 146 had a sufficient number of similarities for estimation of average
genome length. The average for genome length across all aquatic viral metagenomes was consistent
with the previous estimate of 50 kb for marine systems using PFGE by Steward et al. [9]. Host-
associated and aquatic viromes had average genome lengths spanning a wide range, from 4.4 to 51.2 kb
and from 4.6 to 267.9 kb respectively. Viral average genome lengths were significantly smaller in host-
associated metagenomes than in aquatic systems (p=0.002, Mann-Whitney U test). Estimates of
microbial average genome length for aquatic and terrestrial biomes were similar to those predicted
using the Effective Genome Size (EGS) method [15], a computational technique based on finding
conserved bacterial and archaeal markers in metagenomic sequences. Aquatic microbiomes also

showed large variation in average genome sizes, ranging from 1.5 to 5.5 Mb for Bacteria and Archaea
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and from 0.7 to 25.7 Mb for protists. Microbial average genome lengths in the terrestrial biome were
significantly higher than in the host-associated and aquatic biomes (p<0.0001, Mann-Whitney U test).
Genome lengths of Bacteria and Archaea from soil environments have previously been shown to be
larger than those observed in other biomes [15]. A larger genome is characteristic of the copiotroph
lifestyle [23] as it provides microbes a selective advantage in the complex soil environment where

scarce but diverse resources are available [24].

Microbial and viral average genome lengths were also significantly different between aquatic sub-
biomes. Aquatic metagenomes were grouped into five categories (ocean, freshwater, hypersaline,
microbialites, and hot springs) to determine if the variation in average genome lengths could be
accounted for by the influence of distinct sub-biomes (Figure 4B, Table S1, Table S2). Other biomes
did not include enough metagenomes from different sub-biomes to allow for meaningful classification
and analysis. While average genome lengths still varied over a range of values in sub-biomes, the
variability was much lower than in the aquatic biome as a whole (Table S1). The average genome sizes
in oceanic viromes varied from 20 to 163 kb, well within the range described in [17]. In hypersaline
metagenomes, the average genome length varied from 51 to 263 kb, which is comparable to viral
genome sizes detected in ponds of similar salinities [16]. A number of average genome lengths were
significantly different between sub-biomes for both viruses and microbes (Figure 4B). The stromatolite
metagenomes had an average genome length which was significantly different from the oceanic and
hypersaline sub-biomes (p < 0.05, Mann-Whitney U test), but not from freshwater systems. Oceanic
and hypersaline environments were not significantly different. In comparison with the biome level
(Figure 4A), the range of average genome lengths at the sub-biome level was reduced (Figure 4B). This

suggests that differences in average genome lengths may be driven by environmental factors at a more
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specific level (e.g. the sub-biome) than what can be encompassed by general biome classifications.
Previous work has demonstrated that both metabolic profiles and dinucleotide composition vary at the
sub-biome level, and significant differences between both composition and metabolic functions have

been reported for marine (ocean), hypersaline, microbialite, and freshwater environments [7,25].

Microbial and viral average genome lengths are independent

Microbial and viral average genome lengths varied independently of each other across biomes
and aquatic sub-biomes, and reflected differences in the way microbial and viral consortia react to
stressors and environmental conditions (Figure 5). Using GAAS estimates for average genome lengths,
we compared 25 pairs of viral and microbial metagenomes sampled from the same environment at the
same time point. Viral and microbial community compositions have been shown previously to co-vary
[26], however, there was no consistent trend between microbial and viral average genome length across

all biomes (Kendall's tau=-0.21, p=0.10).

Most viromes in this analysis were obtained by the collection of viral particles small enough to
pass through 0.22 um pore size filters. The four viral metagenomes collected using 0.45 pm filters [27]
had a larger viral average genome length (in light blue in Figure 5). These data show that large viruses
may be omitted when sampling with 0.22 pum filters and the capsid size of DNA viruses is likely
positively correlated with their genome length. Sampling biases, however, do not account for the

independence of viral and microbial length reported here.

Paired metagenomes from oceanic and hypersaline aquatic sub-biomes were characterized by
small fluctuations in viral genome lengths coupled with large variations in microbial genome lengths.
The four paired ocean metagenomes (Figure 5, light blue squares) were taken from waters surrounding

coral atolls in the Northern Line Islands [27]. Microbial communities changed dramatically along a
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gradient of human disturbance, with populations of pathogens and heterotrophic microbes increasing
with human activity [27], which could have resulted in large differences in average microbial genome
lengths between atolls. Across all four atolls, viral communities were dynamic but dominated in general
by Synechococcus and Prochlorococcus phage, according to both the original [27] and the GAAS
analysis (not shown). The large genome of these widespread phages resulted in a less variable viral
average genome length. In hypersaline metagenomes (Figure 5, blue diamonds), a similar trend of low
variation in viral genome lengths coupled with larger ranges of microbial genome lengths was
observed. This corresponded to known differences in the ranges of genome lengths of dominant
halophilic viruses and microbes. The most abundant viruses in hypersaline systems have genome
lengths between 32 and 63 kb, while predominant Halobacteria have genome lengths varying across a

larger range, from 2.6 to 4.3 Mb [28,29].

The relationship between viral and microbial average genome lengths in manipulated coral
metagenomes reflected differences in how viral and microbial consortia reacted to stress (Figure 5,
yellow triangles). Five of the six manipulated metagenome pairs used in this analysis were
metagenomes from Porites compressa corals subjected to a variety of stressors [30,31]. Nutrient, DOC,
temperature, and pH stress all resulted in an increased abundance of large herpes-like viruses over the
control, which could lead to increased average viral genome lengths overall [30]. However, shifts in the
microbial consortia (consisting of Bacteria, Archaea, and eukaryotes) were more variable depending on
which stressor was applied [31]. For example, temperature stressed corals showed a dramatic increase in

fungal taxa, which could be driving the larger average microbial genome length seen here.
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Conclusions

The GAAS software package implements a novel methodology to accurately estimate
community composition and average genome length from metagenomes with statistical confidence.
GAAS provides the user with both textual and graphical outputs, including genome length spectra,
relative abundance pie charts, and relative abundances mapped to phylogenetic trees. GAAS can easily
be applied to any database of complete sequences to perform taxonomic or functional annotations, and
provides filtering by relative alignment length as a standard for selecting significant similarities
regardless of which database is used. Since GAAS controls for sampling bias towards larger genomes
and considers all significant BLAST similarities, it has the potential to identify key players in
ecosystems that may be ignored by other analyses. For example, the re-analysis of the Sargasso Sea
virome indicated that small ssDNA phage were very abundant and may play a previously overlooked
role in the oceanic ecosystem. GAAS could also be applied in metagenomic studies of disease
outbreaks and epidemics. Many emerging and highly virulent human pathogens are ssRNA viruses with
small genomes, which could be missed by standard analysis methods, which do not normalize for
genome length. Meta-analysis using GAAS provided insight into how environmental factors may affect
average genome lengths in microbial and viral communities and the relationships between them. The
lack of covariance between microbial and viral average genome lengths indicates that natural and

applied stressors have different effects on microbes and viruses from the same environment.
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Materials and methods

GAAS: Genome relative Abundance and Average Size in random shotgun libraries

GAAS software package
GAAS was implemented as a standalone software package in Perl and is freely available at

http://sourceforge.net/projects/gaas/. It accepts and produces files in standard formats (FASTA

sequences, Newick trees, tabular BLAST results, SVG graphics). The GAAS methodology is described

in detail below and is outlined in Figure 6.
Similarity filtering

BLAST analyses (NCBI BLAST 2.2.1) were conducted through GAAS in order to determine
significant similarities between metagenomic sequences and completely sequenced genomes.
Similarities were filtered based on a combination of maximum E-value, minimum similarity percentage
and minimum relative alignment length. E-value filtering removed non-significant similarities, and the
alignment similarity percentage and relative length were used to select for strong similarities likely to
reflect the taxonomy of the metagenomic sequences. E-values depend on the size of the database and
the absolute length of alignments between query and target sequences, and thus may not be comparable
between analyses [32,33]. Relative alignment length, also called alignment coverage [34], is the ratio of
the length of the alignment to the length of the query sequence (Figure S7). It is independent of the
database size and sequence length, and provides an intuitive and consistent threshold to select
significant similarities. Since the ends of sequenced reads can be of lower quality, similarities were kept
only if the length of the alignment represented the majority of the length of the query sequence.

Sequences with no similarity satisfying the filtering criteria were ignored in the rest of the analysis.
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Similarity weighting

In order to avoid the loss of relevant similarities by reliance upon smallest E-values alone [5], all
significant similarities for each query sequence (as defined by our criteria above) were kept and

assigned weights as follows.

Based on the Karlin-Altschul equation, the expect value E;between a metagenomic query
sequence i and a target genome sequence j is givenby: E; =m,"n’ e " where m’; is the effective
query sequence length, n' is the effective database size (in number of residues) and §'; is the high-
scoring pair (HSP) bitscore [32]. Using the effective length corrects for the “‘edge effect” of local
alignment and is significant for sequences smaller than 200 bp such as sequences produced by the high
throughput Roche-454 GS20 platform. Assuming that a query sequence is more likely to have local
similarities to longer target genomes, each of the E-values can be reformulated into an expect value Fj;
of a similarity in a given target genome by: F; =m, "=E;t;'"/n" where'is the effective
length [35] of the target genome j. Using the length of the target genome in the F-value produces an

expect value relative to the target genome, not to the totality of the genome database (as is the case of

the E-value).

From Fj, a weight w; can be calculated as w; =z, / F; with z being a constant such that for a

1

given metagenomic query sequence i, Z Wi =1 This weight carries the statistical meaning of the
J

expect value of the similarity relative to the given genome in such a way that the larger the expect value,

the lower the weight. Therefore, for a given query sequence i, the weight was calculated as
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Genome relative abundance using genome length normalization

The relative abundance of sequences in a random shotgun library is proportional not only to the
relative abundance of the genomes in the library but also to their length. Similarly to the normalization
used in proteomics [36-38], normalization by genome length is needed to obtain correct relative
abundance of the species in a metagenome. For each target genome j, the weights w; to that genome
were added to obtain W;. The weighted similarities W, to each genome were then normalized by the
actual length ¢ of the genome (including chromosomes, organelles, plasmids and other replicons) to

obtain accurate relative abundance estimates: W, = x /t; where x is a constant such that

2w,=1
i

Average genome length calculation

GAAS relies on the relatively stable genome size found within taxa [39] to calculate average
genome length. The average genome length was calculated as a weighted average of individual genome
lengths. The length of the genome for each individual organism identified in the metagenome was

weighted by the relative abundance of that organism as calculated by GAAS. Thus, the mean genome

length L was calculated as: L= ; "eli where r; was the relative abundance of organism £, and /; its

individual genome length.

Confidence intervals for relative abundance and average genome length estimates

A bootstrap procedure was implemented in GAAS to provide empirical confidence intervals for
relative abundance and average genome length estimates. The estimation of community composition
and average genome length was repeated many times using a random subsample of 10,000 sequences

for each repetition. Confidence intervals were determined based on the percentiles of the observed
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estimates, e.g. 5" and 95" percentiles for a 90% confidence interval.

Reference databases for viral, microbial and eukaryotic metagenomes

NCBI RefSeq (ftp:/ftp.ncbi.nih.gov/refseqg/release) (Release 32, August 31, 2008) was used as

the target database for the estimation of taxonomic composition and average genome size. Three
databases containing exclusively complete genomic sequences were created from the viral, microbial,
and eukaryotic RefSeq files. All incomplete sequences were identified as having descriptions

containing words such as “shotgun”, “contig”, “partial”, “end” and “part”, and were removed from the

database.

A taxonomy file containing only the taxonomic ID of the sequences in these three databases was
produced using the NCBI Taxonomy classification. Sequences with a description matching the
following words were excluded from that file unless the chromosomal sequences were also available for

LEITS CEINTS CERT

the same organism: “plasmid”, “transposon”, “chloroplast”, “plastid”, “mitochondrion”, “apicoplast”,

“macronuclear”, “cyanelle” and “kinetoplast”. The complete viral, microbial, and eukaryal sequence

files with accompanying taxonomic 1Ds are available at http://biome.sdsu.edu/gaas/data/.

Mapping to phylogenetic trees

Similarly to the Interactive Tree Of Life (ITOL) [40] and MetaMapper

(http://scums.sdsu.edu/Mapper), GAAS is able to graph the relative abundance of viral, microbial or

eukaryotic species on phylogenetic trees such as the Viral Proteomic Tree (VPT) or Tree Of Life

(http://itol.embl.de). The Viral Proteomic Tree was constructed using the approach introduced in the

Phage Proteomic Tree and extending it to the >3,000 viral sequences present in the NCBI RefSeq viral

collection (Edwards, R. A.; unpublished data, 2009).

Benchmark using simulated viral metagenomes

Simulated metagenomes were created to test the validity and accuracy of the GAAS approach
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using the free software program Grinder (http://sourceforge.net/projects/biogrinder), which was

developed in conjunction with GAAS. Grinder creates metagenomes from genomes present in a user-
supplied FASTA file. Users can simulate realistic metagenomes by setting Grinder options such as
community structure, read length and sequencing error rate. Over 9,500 simulated metagenomes based
on the NCBI RefSeq virus collection were generated using Grinder. The viral database was chosen
since its large amount of mosaicism and horizontal gene transfer represents a worst-case scenario.
Therefore, benchmark results using the viral database are expected to be valid for higher-order
organisms such as Bacteria, Archaea and eukaryotes. The parameters used were a coverage of 0.5 fold,
and a sequencing error rate of 1% (0.9% substitutions, 0.1% indels). Half of the simulated
metagenomes had a uniform rank-abundance distribution, while the other half followed a power law
with model parameter 1.2. Sequence length in the artificial metagenomes was varied from 50 to 800 bp

for the analysis of read length effects on GAAS estimates.

For each simulated viral metagenome, GAAS was run repeatedly with different parameter sets
(relative alignment length and percentage of identity). The maximum E-value was fixed to 0.001 in
order to remove similarities due to chance alone. Each set of variable parameters was tested on a
minimum of 1,200 different Grinder-generated metagenomes. All computations were run on an 8-node

Intel dual-core Linux cluster.

Due to the limited number of whole genome sequences available, a great majority of the
sampled organisms in a metagenome cannot be assigned to a taxonomy. To evaluate the effect of
sequences from novel organisms on GAAS estimates, the taxonomy of 80% randomly chosen
organisms in the database was made inaccessible to GAAS rendering them “unknown”. A control

simulation with 100% known organisms was run for comparison (Figure S2).
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The accuracy of GAAS estimates was evaluated by comparing GAAS results to actual
community composition and average genome size of the simulated metagenomes. The relative error for

average genome size was calculated as r = |x—xe| / x , where x and x, are the true and estimated

I'n

|
| Z 2
values respectively. For the composition, the cumulative error was calculated as Ir], \ - i
R= =

n n
where r; is the relative error on the relative abundance of the target genome i and n is the total number

of sequences in the database.

Because the benchmark results were not normal, non-parametric statistical tests were used for
all pairwise (Mann-Whitney U test) and multi-factor comparisons (Friedman test) of average errors.

Non-parametric correlations were calculated using Kendall's tau.

Benchmark using simulated microbial metagenomes

GAAS was also tested on the three simulated metagenomes available at IMG/m
(http://fames.jgi-psf.org). Parameter setting and data processing were conducted as in viral benchmark

experiments. Points on the IMG/m microbial benchmark graphs represent the average of 58 repetitions.

Microbial strains typically have a largely identical genome, with a fraction coding for additional
genes and accounting for differences in genome length. An additional simulation was performed to
investigate how the presence of closely related genomes influences the accuracy of the GAAS
estimates. The 15 Escherichia coli strains present in the NCBI RefSeq database, ranging from 4.64 to
5.57 Mb in genome size, were used to produce ~4,500 shotgun libraries with Grinder. The parameters

used were the same as for the simulated viral metagenomes, but with a coverage of 0.0014 fold (>1,000
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sequences). Half of the simulated metagenomes were treated as in the viral benchmark, using the
GAAS approach and assuming no unknown species. The other half were treated similarly but taking
only the top similarity. Points on the graph of the microbial strain benchmark represent the average of

>2,200 repetitions.

Meta-analysis of 169 metagenomes

The composition and average genome size for 169 metagenomes were calculated using GAAS.
Most of these metagenomes were publicly available from the CAMERA [41], NCBI [42], or MG-RAST
[43] (Table S2), and a few dozens were viromes and microbiomes newly collected from solar saltern
ponds, chicken guts, different soils and an oceanic oxygen minimum zone (Protocol S1). The
metagenomes used here therefore represent viral, bacterial, archaeal, and protist communities sampled
from a diverse array of biomes and were categorized as one of the following: “aquatic”, “terrestrial”,
“sediment”, “host-associated”, and “manipulated / perturbed”. The large number of aquatic
metagenomes was further subdivided into: “‘ocean”, “hypersaline”, “freshwater”, “hot spring” and
“microbialites”. Sampling, filtering, processing and sequencing methods differed among compiled
metagenomes. Table 1 provides a summary of the number of metagenomes from each biome (a list of

the complete dataset is presented in detail in Table S2).

For all metagenomes, GAAS was run using a threshold E-value of 0.001, and an alignment
relative length of 60%. In addition, for bacterial, archaeal and eukaryotic metagenomes, similarities
were calculated using BLASTN with an alignment similarity of 80%. Due to the low number of
similarities in viral metagenomes using BLASTN, TBLASTX was used for viruses, with a threshold
alignment similarity of 75%. All average genome length estimates produced from less than 100

similarities were discarded to keep results as accurate as possible. Manipulated metagenomes were
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ultimately not used in the meta-analysis because they do not accurately represent environmental
conditions. Statistical pairwise differences between average genome lengths across biomes were

assessed using Mann-Whitney U rank-sum tests.

The average genome length and relative abundance results obtained for all metagenomes with
our GAAS method were compared to the “standard” analytical approach where: 1) only the top
similarity for each metagenomic sequence is kept, 2) there is no filtering by alignment similarity or
relative length, and 3) no normalization by genome length is carried out. The virome from the Sargasso
Sea was chosen to illustrate in detail the difference between the results obtained with the two methods

(Figure 3).

Correlation between viral and microbial average genome length

Average genome lengths were calculated for 25 pairs of microbial and viral metagenomes
sampled from the same location at the same time. The statistical relationship between viral and
microbial average genome length in paired metagenomes was evaluated using Kendall's tau, since
lengths were not normally distributed. Regression analysis was performed with Generalized Linear
Models (GLM). Interactions between genome lengths and biome classifications were not significant

and were not included in final models.

Statistical analyses

All statistical analyses of the GAAS benchmark results, environmental genome length and
genome length correlations described above were performed using the free statistical software package

R (http://www.R-project.org/) [44].
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Figure 1: Effects of length normalization and similarity weighting on the accuracy of GAAS estimates.
Different methods were used: (A) the standard method (no length normalization, selection of the top
similarity only), (B) a combination of genome length normalization and top similarity selection only,
and (C) the GAAS method (genome length normalization, selection of all significant similarities, and
E-value based weights). Decreases in average error indicate increased accuracy. In the simulated viral

metagenomes, 100 bp sequences were used and 80% of the species were considered unknown.
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Figure 2: Effects of metagenomic read length on average error of GAAS estimates. Decreases in
average error indicate increased accuracy. In the simulated metagenomes, 80% of the species were
considered unknown. See Figure S5 and Figure S6 for full details. considered unknown. See Figure S5
and Figure S6 for full details.
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Sea (left) and size spectrum with 95% confidence interval for the average genome length (right) were
calculated using the standard method (A) and GAAS (B).
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excluded from the statistical analysis due their small number. All protist metagenomes were from the
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Tables

1able 1: Summary of metagenomes by type used in the meta-analysis

Biome Sub-biome Number of viral Number of bacterial and Number of protist
metagenomes archaeal metagenomes | metagenomes

Aquatic (total) - 34 45 17

Aquatic Ocean 15 26 17

Aquatic Hypersaline 10 10 0

Aquatic Freshwater 4 0

Aquatic Hot spring 2 | 0

Aquatic Microbialites 3 0

Sediments : 3 2 0

Terrestrial (soil) |- 4 19 2
Host-associated - 17 11 | 0
Manipulated / - 7 g 0

perturbed

* The five manipulated coral metagenomes also contained sequences from eukaryotic genomes as
described in [31].
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Supplementary Material

Protocol S1: sample collection and metagenome sequencing

Oxygen minimum zone viromes:

The oceanic oxygen minimum zone samples were collected in June 2008 off Iquique, Chile,
(20.104°S and 70.404° W). Oxygen minimum zone viral metagenomes were constructed by filtering 40
1 of water collected using a CTD rosette lowered to a sampling depth of 90 and 200 m
(OxMinZoneVir200806-90 and OxMinZone Vir200806-200 respectively). Samples were concentrated
through a 100 kDa tangential flow filter to retain viral particles. The concentrate was passed through a
0.45 um sterivex filter to remove larger cells and treated with chloroform. The viruses were purified
using cesium chloride (CsCl) step gradients to remove free DNA and any cellular material. Viral
samples were visually checked for microbial contamination using epifluorescence microscopy. Viral
DNA was extracted using CTAB/phenol:chloroform extractions and amplified using Genomiphi
reactions. These reactions were pooled and purified using silica columns (Qiagen Inc, Valencia, CA).
The DNA was precipitated with ethanol and re-suspended in water at a concentration of approximately
300 ng pl'. Sequencing was performed using pyrosequencing on Roche Applied Sciences/454 Life
Sciences GS-FLX platforms with a practical limit of 250 bp. Duplicate sequences were removed from

the obtained dataset and the submitted to NCBI (Genome Project 40791 and 40793).

Runting-stunting chicken gut viromes:

One day old specific pathogen-free broilers (USDA-ARS, SEPRL, Athens, GA) were orally
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infected with 1 ml of gut content from 12-day-old commercial broiler chickens which showed the
typical signs of runting-stunting-syndrome (RSS) in chicken (growth retardation > 40%, cystic lesions
in the small intestine). Before inoculation, the gut content of RSS affected chicken was centrifuged at
4°C for 30 min at 3000 x g. the obtained supernatant was filtered first through a 0.45 um filter followed
by filtration through a 0.22 um filter. A second group of broilers was mock-infected with phosphate
buffered saline. Five days, 8 d, and 12 d after infection, 10 birds of each group were euthanized and
necropsy was performed. The duodenal loop was taken for histological examination. The analysis of the
sections showed that cystic lesions were only present in the infected group. The highest number of
lesions was observed at 8 d after infection. Based on this result the gut content harvested at 5 d after
infection was used for subsequent experiments. The purification of the gut content was performed
following a multi-step centrifugation protocol. In a first step, the samples were centrifuged at 16000 x g
to remove cellular organelles and debris. The obtained supernatant was filtered twice as described
above. Next the filtrate was centrifuged through a 10% sucrose cushion made in TEN buffer (10 mM
Tris-HCI, 100 mM NaCl, 1 mM EDTA, pH 7.5) at 174899 x g for 3h. The obtained pellets (RSS+,
RSS-) were resuspended in 400 ul TEN buffer. To purify nucleic acids, the RNA and DNA localized
outside of viral particles needed to be degraded. To this end, 40 pl of 10x DNA T buffer (Roche), 20
units of DNase I (Roche) and 10 ug of RNase I (Roche) was added to 360 pl of the viral suspension.
The mixture was incubated for 1 h at 37C. Both samples (RSS+, Con) were then split and 200 ul of
each sample was used for purification of either the DNA (QIAamp DNA Blood Mini Kit, Qiagen) or
RNA (High Pure RNA isolation Kit, Roche) following the manufacturers instructions. The resulting
samples (RSS+ RNA, RSS- RNA, RSS+ DNA and RSS- DNA) were amplified separately using two

different protocols to amplify the metagenome (called respectively
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ChickenRuntingStuntingPRnaVir2008, ChickenRunting StuntingMRnaVir2008,
ChickenRuntingStuntingPDnaVir2008 and ChickenRuntingStuntingMDnaVir2008). The RNA
containing samples were amplified using the Transplex Whole Transcriptome Amplification Kit
(Sigma). The amplification of the DNA library for both DNA samples was performed using GenomiPhi
V2 DNA Amplification Kit (GE Healthcare). Both protocols were applied as recommended by the
manufacturer. The resulting cDNA library was submitted to 454 Life Science for sequencing using the
GS-FLX platform. Duplicate sequences were removed and submitted to NCBI (Genome Project 40789,

40785, 40787 and 40783).

Solar saltern microbiome:

A water sample from the solar saltern of South Bay Salt Works (Chula Vista, CA) was collected
in July 2004 from a pond with high salinity (28-30%, measured using a hand refractometer). The
microbial fraction was isolated from the water sample by passage through a 0.2 pm tangential flow
filter (TFF, Millipore). The retentate was kept and the microbial fraction was collected from the 0.2 um
TFF retentate by centrifugation at ~ 2000 xg for 10 min. Microbial DNA was extracted using the Ultra
Clean Soil DNA Kit (Mo Bio Laboratories, CA). The microbial DNA samples was amplified using the
strand-displacement ®29 DNA polymerase (GenomiPhi Amersham Biosciences, NJI). The resulting
metagenomic DNA was pyrosequenced on the GS20 sequencer (454 Life Sciences, CT). The raw
metagenomic sequences were screened to remove duplicate sequences. The metagenome, referred to as

HighSalternSDbayMicD200407, was submitted to NCBI (Genome Project 40795).

South China sediments microbiome:
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A marine sediment sample was collected using a gravity piston corer during a March 2006
Marine Expedition at the BD7-2 station of the South China Sea at a depth of 778.5 m below seafloor.
The sample was stored onboard at 4°C and then divided into 5-cm sediment subsamples below seafloor.
and stored in —80°C. The 5 to 10 cm layer was used for the library construction in this study. Prior to
the metagenome DNA extraction, marine sediments were washed following the protocol previously
described by Fortin [1] to remove contaminants: three washes, each wash with 100ml washing buffer
(50mM Tris-HCIL, pH 9.0, 100mM Na2EDTA, 1.0% PVP, 100mM NaCl, 0.05% Triton X-100), after
vortexing for 1 min, the sample was incubated in 55°C for 3 min, and then centrifuged at 3,000xg for 5
min [1]. After washing steps, 5g pellet was mixed by vortexing with 13.5 ml of extraction buffer (100
mM Tris-HCI, pH 8.0, 100 mM sodium EDTA, pH 8.0, 100 mM sodium phosphate, pH 8.0, 1.5 M
NaCl, 1% CTAB). Three cycles of thawing and freezing in liquid nitrogen were then applied to the
suspension and the sample was then incubated at 37°C with 50 pl of proteinase K (20 mg/ml) for 30
min [2,3]. The extracted metagenomic DNA was repaired using Epicentre’s repair enzyme mix and
size-selected on 1% agarose PFGE with CHEF-DRIII system (Bio-Rad). Pulsed-field gel
electrophoresis was carried out at 5 V/cm voltages with a ramping time of 0.1s to 40s at 14°C in
0.5xTBE buffer for 16 h. The metagenomic DNA with size of 36 to 48 kb was cut off from the gel and
recovered by electro elution and then ligated to Epicentre’s pCC2 FOS fosmid vector. This
metagenomic library, named SouthChinaSeaSedimentsMic, was constructed using Epicentre’
CopyControl fosmid library production kit. Over 1000 fosmid clones were randomly selected from the
IMCAS-F003 library for end sequencing using T7 primer (5-TAATACGACTCACTATAGGG-3') and
pCC2 reverse sequencing primer (5'-CAGGAAACAGCCTAGGAA-3"). All the fosmid end sequences

were revised and trimmed using Lasergene package, version 7.10 (DNA star, USA) before submission to
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NCBI (Genome Project 33581).

Pacific Beach sand metagenome:

DNA was extracted from a sample of sand at Pacific Beach, San Diego, California, USA, in
august 1999, cloned and sequenced. The protocol was described in detail by Naviaux [4]. Here, over
2,300 additional clones from this metagenomic library, named PacificBeachSandEuk here, were
sequenced following the same procedure as before and the full set of sequences (~4900) was made

publicly available through the NCBI (Genome Project 13729).

Fish gut viromes:

Adult hybrid striped bass were collected in April 2006 from a 5x2 m open-air aquaculture pond
in San Diego, California, USA. Each fish was classified as healthy or morbid by veterinarians upon
visual inspection. Fish were sacrificed with an overdose of MS-222 (Finquel, Argent Laboratories), and
examined for the presence of gross external and internal lesions to confirm preliminary diagnoses.
Symptomatic fish had empty gut contents. Five symptomatic and five asymptomatic fish were selected
and gut contents were collected by flushing aseptically with 10 mL of SM buffer. Samples were
sonicated (15 seconds, 3 times) and then centrifuged at 150 x g for 20 minutes at 4°C. The supernatant
was then filtered (0.45 um and 0.2 um) to separate the microbial fraction (attached onto the filter) from
the viruses (filtrate). Viral particles in the filtrate were purified using a CsCl step gradient and viral
DNA was extracted as described by Thurber [5]. Viral DNA was amplified with GenomiPhi (GE
Healthcare, Piscataway, NJ) and ethanol precipitated. Approximately 10 pg of each DNA sample was
submitted for GS20 pyrosequencing at 454 Life Sciences to produce the

FishHeal GutKentSTVir20060504 and FishMorGutKentSTVir20060504 metagenomes (from healthy
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fish and morbid fish respectively). Duplicate sequences were removed and the metagenomes were

submitted to NCBI (Genome Project 28397 and 28399).

Arctic marine microbial metagenome:

The Arctic sample (ArcticMic) was collected from a depth of 10 m at 72:19.33N, 151:59.07W
[6]. Environmental DNA was extracted from the bacterial size fraction obtained by pumping 500 L of
seawater sequentially through a 1 um nominal pore size polypropylene string-wound filter (Cole
Parmer) and a 0.8 um polycarbonate filter (Nuclepore). Bacteria were collected from the filtrate by
tangential flow filtration using a 0.1 um hollow fiber filter (A/G Technology) and an Amicon DC10
gear pump. The sample was concentrated to 2 L, diafiltered with a buffer (0.5 M NaCl, 0.1 M EDTA,
10 mM Tris pH 8.0), and stored frozen. Cells were later collected from the thawed concentrate and
lysed by treatment with SDS and lysozyme. Nucleic acids were extracted from the lysate using phenol

and chloroform, sequenced, and released (Genome Project 29035).

Soil microbiomes:

Soil cores were taken to a depth of 5 cm from a random location in proximity of the land-use

type associated with primary and secondary tower locations at selected National Ecological

Observatory Network (NEON) primary sites. NEON soils were collected and stored at -20 °C. Prior to
downstream analysis soil samples were passed through an 8 mm sieve in order to remove roots and any
associated surface litter. After sieving, remaining fine roots were hand-picked from the soil with

tweezers. Metagenomic DNA was isolated from 5-10 g of soil using the UltraClean® Mega Soil DNA
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Isolation Kit (MOBIO, Carlsbad, CA). Concentration and quality assessment was determined by
fluorometry (Qubit Quantitation Platform, Invitrogen, Carlsbad, CA) and agarose gel electrophoresis.
Metagenomic DNA (5 ug) was used to construct shotgun libraries and prepared for sequencing using
the standard GS FLX emPCR protocol and LR70 sequencing chemistry (Roche Applied Science,
Indianapolis, IN). Sequencing was performed by the High-Throughput Genome Analysis Core
(HGAC), Institute for Genomics and Systems Biology at Argonne National Laboratory. MG-RAST

accession numbers are:

Metagenome MG-RAST ID
So0ilSJ1Mic MG 4441557.3
SoilWF1Mic MG 4441556.3
SoilHF 1Mic MG 44416423
SoilKP3Mic MG 4441643.3
SoilLF2Mic MG 4441644.3
So0ilSJ2Mic MG 4441645.3
SoilKW 1Mic MG 4441664.3
SoilWF2Mic MG 4441665.3
SoilYN2Mic MG 4441687.3
SoilTF1Mic MG 4441688.3
SoilCP1Mic MG 4441689.3
SoilCC1Mic MG 4441690.3
SoilCP3Mic MG 4441691.3
SoilKW2Mic MG 4441691.4
SoilKP1Mic MG 4441994.3
SoilTF2Mic MG 4442452.3
SoilYN1Mic MG 4442453.3
SoilLF1Mic MG 4442455.3

Microbial metagenomes of the Indian Ocean and Antarctica lakes:
These metagenomes were collected during phase II of the Global Ocean Sampling effort [7,8]
and during an Antarctica expedition. While these data is unpublished, the sequences and metadata for
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these samples are available on CAMERA and NCBI:

Metagenome NCBI Genome Project ID
AntarcticaLakeMic GP 33179
GS000al1Mic GP 13694
GS000al3Mic GP 13694
GS000b11Mic GP 13694
GS000b13Mic GP 13694
GS000cMic GP 13694
GS000dMic GP 13694
GS00laEuk GP 13694
GS001bEuk GP 13694
GSO011Mic GP 13694
GS012Mic GP 13694
GS016Mic GP 13694
GS020Mic GP 13694
GS023Mic GP 13094
GS025Euk GP 19735
GS034Mic GP 13694
GS048aMic GP 13694
GS048bEuk GP 13694
GS108bEuk GP 13694
GS110bEuk GP 13694
GS112bEuk GP 13694
GS117bEuk GP 13694
GS122bEuk GP 13694
Move858 Vir GP 13694
References:
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Figure S1: Sampling bias toward larger genomes in metagenomic libraries. Larger genomes will
produce more fragments of a given size, and are more likely to be sampled even if they occur in the
same abundance as small genomes.
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Figure S2: Accuracy of the GAAS estimates when no species are unknown. Error on the relative
abundance (top) and average genome size estimates (bottom) when: (A) 80% of the species were treated
as unknown, (B) no species were assumed to be unknown. The simulated viromes were made of 100 bp
sequences.
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Figure S3: Accuracy of GAAS estimates for microbial metagenomes. GAAS relative abundance error
(top), average genome size error (middle) and number of similarities (bottom) for the JGI simulated
microbial metagenomes (~1,200 bp/read). 80% of the species were treated as unknown.
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Figure S4: Effect of using all similarities for microbial strains. The error on community composition
(top) and average genome length (bottom) for simulated metagenomes made of 15 Escherichia coli
strains was estimated by GAAS. Sequence length was 100 bp and no strains were treated as unknown.
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Table S1: Biome-averaged genome length estimated by GAAS for the metagenomes of each
environment. The numbers reported are: mean (median) * standard deviation

Biome

Aquatic (total)
Aquatic
Aquatic
Aquatic
Aquatic
Aquatic

Sediments

Sub-biome  Average viral

genome length (kb)

- 79.9(61.4) £59.4
Ocean 102 (103) + 53.3
Hypersaline 91.9(66.2) = 72.2
Freshwater 42.0(41.4) £8.23
Hot spring -

Stromatolites 24.1 (17.3) + 23.6
- 85.6 (85.6) + 4.28

Terrestrial (soil) - -

Host-associated - 33.2(39.8) £ 21.2

48

Average bacterial and
archaeal genome length (kb)

3,020 (2,970) + 1,150
2,580 (2,150) + 1,120
3,250 (3,430) + 925
4,240 (4,130) + 313
2,820 (2,560) + 1,340
4,560 (4,500) + 157
4,370 (4,370) + 803
5,910 (5,930) + 218
3,150 (3,190) + 1,420

168

Average protist
genome length (kb)

2,690 (807) + 6,060



Table S2: Detail of the 169 metagenomes used for the meta-analysis and their average genome size
estimated by GAAS. Accession numbers: CA, CAMERA Accession; GB, NCBI GenBank; GP, NCBI
Genome Project; GSS, NCBI Genome Survey Sequence; MG: MG-RAST Accession; SRA, NCBI

Short Read Archive.

Metagenome Type Biome
name

AlaskanSoilFun eukaryal Terrestrial
galEuk

AlicanteSaltern
Mic

AlvinellaWorm
Mic

AntarcticalLake
Mic

ArcticMic

ArcticVir2002

BabyFecesSDVi
r

BBCVirl996to2
004

BearpawHotSpr
ingVir
CheseapeakeBa
yVir

ChickenCecum
ClejuniMic200
7

ChickenCecum
UninfectedMic2
007

ChickenRunting
StuntingMDna
Vir2008

ChickenRunting
StuntingMRna
Vir2008

ChickenRunting
StuntingPDnaV

microbial Aquatic

microbial Host-

associated
microbial Aquatic
microbial Aquatic
viral Aquatic
viral Host-
associated
viral Aquatic
viral Aquatic
viral Aquatic
microbial Host-
associated
microbial Host-
associated
viral Host-
associated
viral Host-
associated
viral Host-
associated

Sub-biome

Hypersaline

Hypersaline

Ocean

Ocean

Ocean

Hot spring

Ocean

Microbial-
viral
pairing

Arctic
Ocean

Arctic
Ocean

Chesapeake
Bay

Chicken
Cecum

Chicken
cecum

Chicken
cecum

Chicken
cecum

Chicken
cecum

49

169

Accession
number

GP 28853

GSS
DUB24018-
DUB26964

GP 17241

GP 33179

GP 29035

GP 17769

GB ED651217-

ED651693

GP 17767

GP 18929

GP 16522

GP 28599

GP 28597

GP 40783

GP 40785

GP 40787

Reference

Allen et al., ISME
1.,20009 [1]

Legault et al., BMC
Genomics 2006 [2]

Grzymski et al.,
Proc. Nat. Acad.
Sci. USA 2008 [3]

Angly et al., PLoS
Biology 2006 [4]

Breitbart et al., Res.
Microbiol. 2008 [5]

Angly et al., PLoS
Biology 2006 [4]

Pride et al., BMC

Genomics 2008 [6]

Bench et al., Appl.
Environ. Microbiol.

2007 [7]

Qu A et al., PLoS
One, 2008 [8]

Qu A et al,, PLoS
One, 2008 [8]

Est. avg.
genome
length (kb)

3,190.26

2,351.67

1,657.26

1,606.13

66.67

42.75

112.38

3,695.38

39.77

41.99

3110



ir2008

ChickenRunting
StuntingPRnaVi
r2008

ConPorCompH
awMic200602

ConPorCompH
awVir200602

DesertSoilJoshu
aTreeVir

DOCPorComp
HawMic200602

DOCPorComp
VirHaw200602

FannLIMic2005
0811

FannLIVir2005
0811

FishHealGutKe
ntSTMic200605
04

FishHealGutKe
ntSTVir200605
04

FishHealSlimK
entSTMic20060
504

FishHealSlimK
entSTVir20060
504

FishMorGutKe
ntSTMic200605
04

FishMorGutKe
ntSTVir200605
04

FishMorSlimKe
ntSTMic200605
04

FishMorSlimKe
ntSTVir200605

viral

microbial

viral

viral

microbial

viral

microbial

viral

microbial

viral

microbial

viral

microbial

viral

microbial

viral

Host-
associated

Manipulated
/ Perturbed

Manipulated
/ Perturbed

Terrestrial

Manipulated
/ Perturbed

Manipulated
{ Perturbed

Aquatic

Aquatic

Host-
associated

Host-
associated

Host-
associated

Host-
associated

Manipulated
/ Perturbed

Manipulated
/ Perturbed

Manipulated
/ Perturbed

Manipulated
/ Perturbed

Ocean

Ocean

Chicken
cecum

Control
Pcomp

Control
Pcomp

DOC
Pcomp

DOC
Pcomp

Fanning
island

Fanning
island

Fish gut

Fish gut

Fish slime

Fish slime

Fish
Morbid Gut

Fish
Morbid Gut

Fish
Morbid
Slime

Fish
Morbid
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170

GP 40789

GP 28429

GP 28417

GSS ER781257-

ER785833

GP 28433

GP 28421

GP 28367

GP 28369

GP 28389

GP 28397

GP 28393

GP 28401

GP 28391

GP 28399

GP 28395

GP 28403

Vega Thurber et al.,
Env. Mic. 2009 [9]

Vega Thurber et al.,

Proc. Nat. Acad.

Sci. USA 2008 [10]

Fierer et al., Appl.
Environ. Microb.
2007 [11]

Vega Thurber et al..
Env. Mic. 2009 [9]

Vega Thurber et al..

Proc. Nat. Acad.

Sci. USA 2008 [11]

Dinsdale et al.,
PLoS One 2008
[12]

Dinsdale et al.,
PLoS One 2008
[12]

Dinsdale et al.,
Nature 2008 [13]

Dinsdale et al.,
Nature 2008 [13]

Dinsdale et al.,
Nature 2008 [13]

Dinsdale et al.,
Nature 2008 [13]

Dinsdale et al.,
Nature 2008 [13]

Dinsdale et al.,
Nature 2008 [13]

6.93

2,077.79

19.90

2,630.08

28.61

2,638.17

152.09

5,234.77

5,229.78

13.23

5,260.79

5,126.12
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04

GOMVirl994to  viral

2001
GS000allMic

GS000al3Mic

GS000b11Mic

GS000b13Mic

GS000cMic

GS000dMic

GS00laEuk

GS001bEuk

GSO011Mic

GS012Mic

GS016Mic

GS020Mic

GS023Mic

GS025Euk

GS034Mic

GS048aMic

GS048bEuk

GS108bEuk
GS110bEuk
GS112bEuk
GS117bEuk
GS122bEuk

microbial

microbial

microbial

microbial

microbial

microbial

eukaryal

eukaryal

microbial

microbial

microbial

microbial

microbial

eukaryal

microbial

microbial

eukaryal

eukaryal
eukaryal
eukaryal
eukaryal

eukaryal

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic

Aquatic
Aquatic
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